COMPLETE THERMAL DESIGN AND MODELING FOR THE PRESSURE VESSEL OF AN OCEAN TURBINE – A NUMERICAL SIMULATION AND OPTIMIZATION APPROACH

by

Khaled Kaiser

A Thesis Submitted to the Faculty of
The College of Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Science

Florida Atlantic University
Boca Raton, Florida
December 2009
COMPLETE THERMAL DESIGN AND MODELING FOR THE PRESSURE VESSEL OF AN OCEAN TURBINE – A NUMERICAL SIMULATION AND OPTIMIZATION APPROACH

by

Khaled Kaiser

This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Nikolaos Xiros, Department of Ocean and Mechanical Engineering, and has been approved by the members of his supervisory committee. It was submitted to the faculty of the College of Engineering and Computer Science and was accepted in partial fulfillment of the requirements for the degree of Master of Science.

SUPERVISORY COMMITTEE:

N. Xiros, Ph.D.
Thesis Advisor

Pierre-Philippe Beaufort, Ph.D.

Frederick Driscoll, Ph.D.

David Vendittis, Ph.D.

Mohammad Ilyas, Ph.D.
Chair, Department of Ocean and Mechanical Engineering

Karl K. Stevens, Ph.D. P.E.
Dean, College of Engineering and Computer Science

Barry T. Rosson, Ph.D.
Dean, Graduate College

November 25, 2009
Date
ACKNOWLEDGEMENT

I have been working for this thesis for the last two years. Over the last two years, I have benefited from the direct supervision of my thesis advisor Dr. Nikolaos Xiros. Without his prudent and knowledgeable supervision, this thesis would not have seen the light of publication. So, my first gratitude goes to my thesis advisor Dr. Xiros. Also over the years, I have benefited from feedback and suggestions from the other two members of my supervisory committee, Dr. Pierre-Philippe Beaujean and Dr. Frederick Driscoll. My heartfelt gratitude and special thanks go to them. Unfortunately, space limitations do not allow me to name everyone who has contributed. However, I wish to particularly thank Dr. David Vendittis for his constructive suggestions.

I want to single out two others for special acknowledgement. Mustapha Mjit and Mico Pajovic, two graduate students at FAU, their mental support and friendly behavior motivated me to devote more time in research. I also want to thank Michael Seibert, another graduate student, for playing a critical role in the development of this thesis.
ABSTRACT

Author: Khaled Kaiser

Title: Complete Thermal Design and Modeling for the Pressure Vessel of An Ocean Turbine – A Numerical Simulation and Optimization Approach

Institution: Florida Atlantic University

Thesis Advisor: Dr. Nikolaos Xiros

Degree: Master of Science

Year: 2009

This thesis is an approach of numerical optimization of thermal design of the ocean turbine developed by the Centre of Ocean Energy and Technology (COET). The technique used here is the integrated method of finite element analysis (FEA) of heat transfer, artificial neural network (ANN) and genetic algorithm (GA) for optimization purposes.
DEDICATED TO

MY PARENTS

FOR THEIR UNCONDITIONAL AND FOREVER LOVE
COMPLETE THERMAL DESIGN AND MODELING FOR THE PRESSURE VESSEL OF AN OCEAN TURBINE – A NUMERICAL SIMULATION AND OPTIMIZATION APPROACH

LIST OF FIGURES ... x
LIST OF TABLES ... xiii
CHAPTER 1 .. 1
 1.1 Introduction .. 1
 1.2 Literature Review ... 2
 1.2.1 ANN Application in Thermal Engineering .. 3
 1.2.2 GA Application in Thermal Engineering .. 4
 1.3 Objective and Scope of the Present Thesis ... 6
 1.4 Thesis Organization ... 7
CHAPTER 2 .. 9
 2.1 Chapter Introduction ... 9
 PART-I Theoretical Background .. 10
 2.2 Modeling of Heat Conduction ... 10
 2.3 Initial and Boundary Condition ... 12
 2.4 Finite Element Approximating Functions in Two Dimensions .. 14
 2.5 Two Dimensional Problem Solved using an Assembly of Elements 16
 2.5.1 The use of Four-noded Rectangular Elements .. 17
 2.6 Time Stepping Methods for Heat Transfer ... 23
2.6.1 Finite element time stepping ... 23
 2.6.1.1 Weighted Residual Method ... 24
 2.6.1.2 Least Squares Method ... 25
2.7 Nonlinear Heat Conduction Analysis ... 26
 2.7.1 Application of Galerkin’s Method to nonlinear transient heat conduction problems ... 26

PART - II Finite Element Analysis of Heat Transfer Using ANSYS 29
2.8 Analysis Considerations ... 29
2.9 Describing the geometry ... 30
2.10 Meshing ... 32
2.11 Axisymmetric analysis .. 32
2.12 Initial and boundary conditions ... 34
2.13 ANSYS Results ... 34
2.14 Fin Solution ... 34
2.15 Chapter Summary .. 37

CHAPTER 3 .. 39
3.1 Introduction ... 39
3.2 Artificial Neural Network: ... 40
 3.2.1 Neuron Model: .. 41
3.3 The Network Architecture ... 45
 3.3.1 A Layer of Neurons .. 46
 3.3.2 Learning Rules .. 50
5.7 Thermal Design Application domain: Motor-gear box arrangement domain inside pressure vessel of an ocean turbine ... 97

5.7.1 Domain description ... 97

5.7.2 Dividing the domain ... 99

5.8 Genetic Algorithm Flowchart ... 102

5.9 Optimum Results Obtained with Genetic Algorithm: .. 103

5.10 Chapter Summary ... 105

CHAPTER 6 ... 108

6.1 Summary of Benefits and Limitations for the Present Methodologies.......... 108

6.2 Conclusions ... 110

6.3 Limitations and future work .. 112

6.3.1 Limitations .. 112

6.3.2 Future works ... 113

APPENDIX A ... 116

APPENDIX B ... 129

APPENDIX C ... 138

BIBLIOGRAPHY ... 159
LIST OF FIGURES

Figure 1-1: The arrangement of the ocean turbine power plant ... 7

Figure 2-1: General domain and boundary ... 13

Figure 2-2: Node numbering for two-dimensional problem using linear elements 15

Figure 2-3: Discretisation of a domain using four-noded rectangular elements 18

Figure 2-4: A typical rectangular element e with local and global node numbers 18

Figure 2-5: The geometric model for the 2D analysis showing all the areas 31

Figure 2-6: Meshing of the design domain ... 32

Figure 2-7: Axisymmetric ANSYS model ... 33

Figure 2-8: Temperature distribution (2D) after 24 hours (in $^\circ K$) without any fin 35

Figure 2-9: Final temperature distribution (3D) after 24 hours (temp are in $^\circ K$) 36

Figure 2-10: Final temperature distribution with five tin fins (temps are in K) 37

Figure 3-1: Typical Neural Network ... 41

Figure 3-2: Single-Input Neuron .. 42

Figure 3-3: Simple neuron with vector input ... 43

Figure 3-4: Log-Sigmoid Transfer Function ... 44

Figure 3-5: Layers of S Neurons .. 46

Figure 3-6: Three (hidden)-Layer Network ... 49
Figure 3-7: ANN prediction error vs. percentage of data used................................. 56
Figure 3-8: Standard Deviation Vs. % of data used.. 56
Figure 3-9: Testing of the NN with same set of training data from 10% to 40%......... 57
Figure 3-10: Testing of the NN with the leftout data ranging from 10% to 40% 57
Figure 3-11: Testing of the NN (trained with 10% - 40% data) with the total data 58
Figure 3-12: Testing of the NN with same set of training data from 40% to 70% 58
Figure 3-13: Testing of the NN with the leftout data ranging from 40% to 70% 59
Figure 3-14: Testing of the NN (trained with 40% - 70% data) with the total data 59
Figure 3-15: Testing of the NN with same set of training data from 70% to 99% 60
Figure 3-16: Testing of the NN with the leftout data ranging from 70% to 99% 60
Figure 3-17: Testing of the NN (trained with 80% - 99% data) with the total data 61
Figure 3-18: Post regression of the trained Neural Network 63
Figure 3-19: Typical training session of a Neural Network 64

Figure 4-1: Network Responses of Architectures (a-top left corner) 5-10-1, (b-top right corner) 5-15-1, (c-bottom left corner) 5-17-1, and (d-bottom right corner) 5-10-10-1 ...69
Figure 4-2: Network Responses of Architectures (a-top left corner) 5-15-10-1, (b-top right corner) 5-15-14-1, (c-bottom left corner) 5-15-17-1, and (d-bottom right corner) 5-17-10-1 ...69
Figure 4-3 : Network Responses of Architectures (a-top left corner) 5-17-14-1, (b-top right corner) 5-10-10-1, (c-bottom left corner) 5-14-14-17-1, and (d-bottom right corner) 5-17-14-14-1 ..70
Figure 4-4: Network Responses of Architectures (a-top left corner) 5-15-10-10-1, (b-top right corner) 5-17-10-10-1, (c-bottom left corner) 5-17-10-14-1, and (d-bottom right corner) 5-17-14-10-1 ..70
Figure 4-5: Configuration of a 5-17-14-14-1 neural network for maximum temperature prediction ..74
Figure 4-6: Neural Network Prediction error for all-combined fins 77
Figure 4-7: Neural Network Prediction error for 5 fins ... 77
Figure 4-8: Neural Network Prediction error for 4 fins ... 78
Figure 4-9: Neural Network Prediction error for 3 fins ... 78
Figure 4-10: Neural Network Prediction error for 2 fins ... 79
Figure 5-1: point crossover behavior .. 96
Figure 5-2: Simplified schematic arrangement of the ocean turbine 98
Figure 5-3: The design domain ... 99
Figure 5-4: The geometric division of the design domain 101
Figure 5-5: Flow chart for the genetic algorithm .. 102
Figure A-1: Example of Function Approximation Network 119
Figure A-2: Nominal Response of Network of Figure A-1 .. 120
Figure B-1: Flowchart of a Continuous GA ... 131
LIST OF TABLES

Table 1-1: The estimated heat loss of the 20KW motor/generator................................. 2
Table 3-1: Standard deviation and maximum error for different % of data used.......... 54
Table 3-2: Mean error for different % of Data used... 55
Table 4-1: Comparison of Results Obtained for Different Network Architectures....... 72
Table 4-2: Network result for all fins combined... 75
Table 4-3: Network results for different no of fins with different architectures 76
Table 5-1: Comparison of GA results with ANSYS results... 104
CHAPTER 1
GENERAL INTRODUCTION

1.1 Introduction

The 20 KW ocean energy turbine created by the Center of Ocean Energy and Technology (COET) at FAU is designed to generate energy out of a three-blade propeller connected to an induction electric motor/generator through a shaft supported by needle bearing and planetary gear reduction box. A motor driving a load is an energy balanced system. On one side is the mechanical demand of the rotating load. On the other is waste heat the motor generates turning that load. A small-sized motor that can not dissipate waste heat fast enough rapidly burns out. Motors sized too large stay cool but waste energy and money in inefficient operation. This waste heat can be dissipated using heat sinks. According to the vibration theory, the location of heat sinks (fins) will give a larger influence on the stress (strain) of fin joint under vibration. That is, the locations of the fins are important factors to the reliability of the whole system. So, it is of particular interest from the point of safety and Machinery Condition Monitoring (MCM) to dissipate this amount of heat so that the motor/generator and the other electronic components inside the pressure vessel keep working under their safe operating temperature. This can be done by selecting the optimal design for heat dissipation.
For doing this the technology applied here is the Finite Element Method (FEM) in heat transfer and numerical optimization.

In this particular case, the 20KW motor, the data provided by the manufacturer Sumitomo regarding heat loss is shown in Table – 1. The arrangement of the ocean turbine is shown in Fig. 1.

<table>
<thead>
<tr>
<th>Actual load (KW)</th>
<th>Ambient Temp ($^\circ F$)</th>
<th>Estimate loss (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>68</td>
<td>890</td>
</tr>
<tr>
<td>11</td>
<td>86</td>
<td>830</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>1200</td>
</tr>
<tr>
<td>20</td>
<td>86</td>
<td>1100</td>
</tr>
</tbody>
</table>

Table 1-1: The estimated heat loss of the 20KW motor/generator

It is not difficult, in principle, to develop a mathematical model for the fin shapes based on heat transfer. It is well known that the heat equation can be represented by the Laplace or Fourier Equation. In practice, however, this equation can only be solved for a very limited number of simple geometries. For complex geometry, we have to resort to numerical technique.

1.2 Literature Review

This section reviews previous works and attempts of using artificial neural network (ANN) and genetic algorithm (GA) related to this research which is a part of thermal engineering. As it is seen that the ANN and GA are applied to wide variety of
thermal engineering, encourages us to apply ANN and GA in our design problem.

1.2.1 ANN Application in Thermal Engineering

In the past, applications of ANN to engineering problems have been attempted in structural engineering and engineering mechanics (Zeng, 1998). Tentative studies of applying ANN to problems in thermal systems have been carried out quite recently, with a relatively short history. With the exception of neural networks and control systems applied to heating, ventilating, and air-conditioning systems, the studies have been somewhat sporadic and in only some distinct areas of application. For heat transfer data analysis and correlation, an ANN-based methodology was proposed by Thibault and Grandjean (1991) and a similar methodology was introduced by Jambunathan et al. (1996) to predict coefficients of heat transfer in convective-flow systems using liquid crystal thermography. Both steady and unsteady heat conduction problems were treated by ANN in studies by Gobovic and Zaghloul (1993), Yentis and Zaghloul (1994), and Kuroe and Kimura (1995). Kaminski et al. (1996) gave an interesting description of the thermal deterioration process based on combined ANN and GA analysis. An ANN was also used to identify location and strength of unknown heat sources by sparse temperature measurements (Momose et al., 1993). In addition, an ANN-based attempt was made to predict measured intrinsic thermodynamic properties (Normandin et al., 1993).

ANN analyses have also been utilized to study and predict the performance of specific thermal devices and systems. Good estimates of the thermal storage loads and the dynamic system operation of typical thermal storage systems were obtained by Ferrano and Wong (1990) and Ito et al. (1995). Heat exchanger performance and control were studied by Diaz et al. (1996, 1998, 1999), Lavric et al. (1993, 1994), and Bittanti
and Piroddi (1997). Several industrial applications of ANN were also demonstrated, in a fluidized-bed dryer (Zbicinski et al., 1996), in a liquid-sodium reflux-pool boiler solar receiver (Fowler et al., 1997), in a steel annealing furnace (Pican et al., 1998), and in the design of a chemical injection-system retrofit fuzzy control system in a thermal power plant (Moon and Cho, 1996). Other specific applications include manufacturing and materials processing involving microelectronic manufacturing (Mahajan and Wang, 1993), a coordinate grinder (Yang et al., 1995), rapid thermal processing control (Fortuna et al., 1996), sensors and sensor analysis involving thermal image processing (Naka et al., 1993), and blast furnace probe temperatures (Bulsari and Saxin, 1995).

All the studies mentioned above represent tentative attempts to apply the ANN analysis to thermal system problems. Since good results have been obtained so far, there is no reason to expect that the ANN approach cannot be applied to many other thermal problems with equal success, particularly in the analysis of dynamic systems and their control.

1.2.2 GA Application in Thermal Engineering

Though the GA is a relatively new technique in relation to its application to thermal engineering, there are a number of different applications that have already been successful. Davalos and Rubinsky (1996) adopted an evolutionary-genetic approach for numerical heat-transfer computations. Shape optimization is another area that has been developed. Fabbri (1997) used a GA to determine the optimum shape of a fin.
The placing of electronic components as heat sources is a problem that has become very important recently from the point of view of computers. Queipo et al. (1994) applied GAs to the optimized cooling of electronic components. Tang and Carothers (1996) showed that the GA worked better than some other methods for the optimum placement of chips. Queipo and Gil (1997) worked on the multiobjective optimization of component placement and presented a solution methodology for the collocation of convectively and conductively air-cooled electronic components on planar printed wiring boards. Mey sen et al. (1997) studied the optimization of microchannels for the cooling of high-power transistors. Inverse problems may also involve the optimization of the solution. Allred and Kelly (1992) modified the GA for extracting thermal profiles from infrared image data which can be useful for the detection of malfunctioning electronic components.

1.3 Objective and Scope of the Present Thesis

The overall objective of the present thesis is to provide methodologies that allow accurate estimation of the heat transfer rate inside the pressure vessel domain of the ocean turbine shown in Figure-1 for the analysis, design and control of thermal systems. To achieve such a goal, this study has made use of techniques that belong to the areas of optimization and artificial/computational intelligence; in particular finite element analysis, genetic algorithms and artificial neural networks. The procedure developed on the basis of the aforementioned methods has been applied to a pressure vessel of the ocean turbine for the purpose of machinery condition monitoring, health prognostics and diagnostics. The procedure can be used as a design tool for different geometrical complexities and other decision variables. The optimization algorithm and the objective function used
here have left rooms for other design variables than the variables considered here. In general, in can be a very useful design tool for this type of ocean energy industry.

The importance of this investigation is that it will provide both the motor and the thermal system engineer with appropriate tools to accurately simulate the heat transfer characteristics of an ocean turbine for their design, as well as their analysis and selection.

![Figure 1-1: The arrangement of the ocean turbine power plant (Courtesy of Dr. Driscoll, COET at FAU)](image)

1.4 Thesis Organization

This thesis focuses on the numerical optimization of thermal design of the pressure vessel of an ocean turbine. The aim of this thesis is to highlight the main parameters of the thermal design process and thus its optimal conditions of use. The thesis is organized in six main chapters:

Chapter 1, dedicated to the general introduction of the methodology, introduces the problem statement. This chapter reviews the literature, and describes the objective of the thesis.
Chapter 2 describes in a nutshell the finite element approach of the design process and describes the design domain. Part-I describes the modeling of heat equation and the initial and boundary conditions, and also various formulations for various discretization methods. Part-II describes the ANSYS simulation of heat transfer for the present problem.

Chapter 3 presents the neural network analysis of heat transfer. Starting with the basic ideas of neural network, this chapter goes deep into the neural network architecture for the specific type of problem considered in this thesis.

Chapter 4 presents the artificial neural network analysis of the present problem. This is the continuation of the previous chapter. This chapter describes the methodology for the chosen architecture of the network and describes the results obtained form the network.

Chapter 5 is dedicated to the genetic algorithm for the design optimization. This chapter delves into the design process for exploring the solution field for the optimum results. This chapter also describes the nonlinear objective function obtained from the previous chapter’s ANN.

And finally Chapter 6 concludes with a summary of the thesis, includes the limitations of this thesis and suggests the scope of future research.
2.1 Chapter Introduction

Over the past three decades, the use of numerical simulation with high-speed computers has gained wide acceptance throughout most of the major branches of engineering. There are many practical engineering problems that require the analysis of problems involving the transfer of heat. The solution of the equation of heat conduction is sufficient in many cases; in other cases the numerical simulation of the process can prove to be extremely useful.

In the field of design engineering, there are numerous examples of practical problems where the behavior of the system under consideration may be predicted via a heat transfer analysis. Mathematical models, which can accurately predict the heat transfer behavior, are often the only means of gaining a better insight into the physical process. If the numerical method makes accurate predictions of the problem, the numerical results can also be used to aid the design of the optimal arrangement.

Exact analytical solutions of the governing equations of heat transfer can only be obtained for problems in which restrictive simplifying assumptions have been made with respect to geometry, material properties and boundary conditions. There is therefore no option but to turn to numerical solution methods for the analysis of practical
problems, where such simplifications are not generally possible. The finite element method, with its flexibility in dealing with complex geometries, is an ideal approach to employ in the solution of such problems.

In the first part of this chapter we first describe briefly the basic theories and governing equations of finite element analysis of heat transfer and then in the second part we present the numerical model analysis of the present problem in ANSYS and shows the result.

PART-I
Theoretical background

2.2 Modeling of Heat Conduction

The equation governing the conduction of heat in a continuous medium can be derived by imposing the principle of conservation of heat energy over an arbitrary fixed volume, V, of the medium which is bounded by a closed surface S. For convenience the conservation statement is expressed in rate form and is written as:

\[
\text{rate of increase of heat in } V = \text{rate of heat conduction into } V \text{ across } S + \text{rate of heat generation within } V \quad \text{(2.1)}
\]

Now,

\[
\text{rate of increase of heat in } V = \int_V \rho \frac{\partial u}{\partial t} \, dV = \int_V \rho c \frac{\partial T}{\partial t} \, dV \quad \text{(2.2)}
\]

To obtain an expression for the rate at which heat is conducted into V across S, we make use of Fourier’s Law of Conduction. This is an empirical relationship which states that, for a surface with unit normal vector \mathbf{n}, the rate at which heat is conducted across the surface, per unit area, in the direction of \mathbf{n} is given by
\[q = -k(\text{grad} T).n = k \frac{\partial T}{\partial n} \quad \text{(2.3)} \]

Thus, if \(n \) denotes the outward unit normal to \(S \), it follows that

rate of heat conduction into \(V \) across \(S \)

\[= \int_S qdS = \int_S k(\text{grad} T).n dS = \int_V \text{div}(k \text{ grad } T)dV \quad \text{(2.4)} \]

where the Divergence Theorem has been applied.

If it is assumed that heat generation in the medium is occurring at a rate \(Q \) per unit volume, then

rate of heat generation within \(V = \int_V QdV \quad \text{(2.5)} \]

Using equations (2.2), (2.4) and (2.5) in (2.1) produces the conservation statement:

\[\int_V \left(\rho c \frac{\partial T}{\partial t} - \text{div}(k \text{ grad } T) - Q \right)dV = 0 \quad \text{(2.6)} \]

and, since the volume \(V \) was arbitrarily chosen initially, it follows that

\[\rho c \frac{\partial T}{\partial t} = \text{div}(k \text{ grad } T) + Q \quad \text{(2.7)} \]

everywhere in the medium. This is the familiar form of the heat conduction equation for a non-stationary system.

where, \(u = \) specific internal energy of the medium

\(\rho = \) density of the medium

\(c = \) specific heat of the medium; \(c = \frac{du}{dT} \)

\(T = \) temperature

\(k = \) thermal conductivity (property of the medium)
\[\frac{\partial}{\partial n} = \text{differentiation in the direction of } \mathbf{n} \]

\[q = \text{flux of heat in this direction} \]

\[Q = \text{rate of heat generation per unit volume} \]

If the conductivity \(k \) and the specific heat capacity \(\rho c \) are assumed to be constant, and if the heat generation rate \(Q \) is independent of \(T \), then equation (2.7) is linear and can be written as

\[\frac{1}{\alpha_i} \frac{\partial T}{\partial t} = \nabla^2 T + \frac{Q}{k} \] (2.8)

where \(\alpha_i = \frac{k}{\rho c} \) is termed the thermal diffusivity of the medium and \(\nabla^2 \) denotes the Laplacian operator defined, in Cartesian Coordinates, by

\[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \] (2.9)

2.3 Initial and Boundary Condition

The solution of heat conduction equation is required over an arbitrary domain \(\Omega \) bounded by a closed surface, \(\Gamma \), as illustrated in Figure 2-1.

For the steady state heat conduction equation, one condition has to be specified at each point of the boundary curve \(\Gamma \) and the typical conditions of practical interest would be:

a) the value of the temperature is prescribed, e.g. \(T = f(x) \) for all \(x \) on \(\Gamma_1 \), or

b) the value of the outward normal heat flux is
prescribed, e.g. \(q = -k(\text{grad } T) \cdot n = -k \frac{\partial T}{\partial n} = N(x, T) + N_c(x, T) + N_r(x, T) \)

for all \(x \) on \(\Gamma_2 \).

Here \(f, N, N_c \) and \(N_r \) are prescribed functions of \(x \) and \(T \) and \(\Gamma = \Gamma_1 \cup \Gamma_2 \), \(\Gamma_1 \cap \Gamma_2 = 0 \).

Figure 2-1: General domain and boundary

Here,

\(N \) = specified heat flux

\(N_c \) = convective heat flux = \(\alpha(T - T_\infty) \)

\(N_r \) = radiative heat flux = \(\varepsilon \sigma(T^4 - T_\infty^4) \)

\(\alpha \) = coefficient of surface heat transfer

\(T_\infty \) = specified ambient temperature

\(\sigma \) = Stefan-Boltzman constant

\(\varepsilon \) = emissivity of the surface

For transient problem, the solution is uniquely determined provided that an
initial condition is given together with a boundary condition at each point of the boundary \(\Gamma \) of the domain. The initial condition should give the distribution of the temperature over the entire region \(\Omega \) at an initial time, usually taken to be the time \(t = 0 \). In addition, in a transient problem, the functions \(f, \xi, \xi_c \) and \(\xi_r \) may vary with time.

2.4 Finite Element Approximating Functions in Two Dimensions

Now consider the construction of an approximate solution to a two-dimensional heat conduction problem on a square region defined by

\[
\frac{\partial}{\partial \xi} \left(k \frac{\partial T}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(k \frac{\partial T}{\partial \eta} \right) + Q = 0 \quad -1 < \xi, \eta < 1 \quad \cdots \cdots \cdots \cdots \cdots (2.10)
\]

\[
T = f(\xi) \quad \text{on } \eta = -1 \quad \cdots \cdots \cdots \cdots \cdots (2.11)
\]

\[
q = -k \frac{\partial T}{\partial n} = N \quad \text{on } \xi = \pm 1 \text{ and on } \eta = 1 \quad \cdots \cdots \cdots \cdots \cdots (2.12)
\]

Here, \(k, f, \xi, \xi_c \) and \(Q \) are prescribed functions. If an approximate solution to this problem is to be sought by applying the Galerkin procedure, a suitable polynomial approximating function set can be obtained by direct extension of the one-dimensional finite element ideas. We select a set of \(M+1 \) points \(\xi_1, \xi_1, \ldots, \xi_{M+1} \) such that \(\xi_1 = -1 \) and \(\xi_{M+1} = 1 \), and a set of \(M+1 \) points \(\eta_1, \eta_2, \ldots, \eta_{M+1} \) such that \(\eta_1 = -1 \) and \(\eta_{M+1} = 1 \). Nodes, numbered so that the first \(4M \) lie on the boundary and the first \(M+1 \) lie on the line \(\eta = -1 \), as shown in Figure 2.2, are located at the points \((\xi_j, \eta_i) \) and the associated Lagrange interpolation polynomials \(\mathcal{L}_{\xi}^{(M)}(\xi) \) and \(\mathcal{L}_{\eta}^{(M)}(\eta) \) are constructed. For node \(j \), located at \((\xi_j, \eta_i) \), the finite element shape function is defined by

\[
N_j(\xi, \eta) = \mathcal{L}_{\xi}^{(M)}(\xi) \mathcal{L}_{\eta}^{(M)}(\eta) \quad \cdots \cdots \cdots \cdots \cdots (2.13)
\]
This function has the value unity at node \(j \) and the value zero at all the other nodes. The trial function set for these approximating functions becomes

\[
\mathcal{J}^{(M(M+1))} = \left\{ \hat{T} | \hat{T} = \psi + \sum_{j=M+2}^{(M+1)^2} T_j N_j ; \psi = \sum_{j=1}^{M+1} f_j N_j ; \hat{T} = \hat{f} \text{ on } \eta = -1 \right\} \quad (2.14)
\]

and the corresponding weighting function set is

\[
\mathcal{W}^{(M(M+1))} = \left\{ W | W = \sum_{j=M+2}^{(M+1)^2} b_j N_j ; W = 0 \text{ on } \eta = -1 \right\} \quad (2.15)
\]

Note now that the numbers \(\hat{T} \) of the trial function set satisfy \(\hat{T} = \hat{f} \) on the boundary \(\eta = -1 \), where

\[
\begin{array}{cccccccc}
3M+1 & 3M & 3M-1 & 3M-2 & 2M+4 & 2M+3 & 2M+2 & \eta_{M+1} \\
3M+2 & & & & & & & \eta_{M} \\
3M+3 & & & & & & & \eta_{M-1} \\
3M+4 & & & & & & & \eta_{M+1} \\
4M+2 & & & & & & & \eta_{4} \\
4M+1 & & & & & & & \eta_{3} \\
4M & & & & & & & \eta_{2} \\
1 & 2 & 3 & 4 & M-2 & M-1 & M & \eta_{1}
\end{array}
\]

Figure 2-2: Node numbering for two-dimensional problem using linear elements
\[
\hat{f}(\xi) = \sum_{j=1}^{M+1} f_j N_j (\xi, -1) \]

(2.16)

In this representation, \(f_j \) denotes the value of \(f(\xi) \) at node \(j \), i.e. at \(\xi = \xi_j \), and (2.16) is the Lagrange interpolating polynomial of degree \(M \) which passes through the prescribed values \(f_1, f_2, \ldots, f_{M+1} \) at the points \(\xi_1, \xi_2, \ldots, \xi_{M+1} \).

2.5 Two Dimensional Problem Solved using an Assembly of Elements

Consider the problem of steady state heat conduction in a two-dimensional region, \(\Omega \), with closed boundary curve, \(\Gamma \), and of thermal conductivity \(k \). If heat is generated within the region at a prescribed rate \(Q \) per unit area, then the distribution of temperature through \(\Omega \) is governed by the solution of the equation

\[
\text{div}(k \text{ grad } T) + Q = \frac{\partial}{\partial x} \left[k \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k \frac{\partial T}{\partial y} \right] + Q = 0 \quad \text{in } \Omega \]

(2.17)

subject to the general boundary conditions

\[
T = f(x) \quad \text{for } x \text{ on } \Gamma_1 \]

(2.18)

\[
q = -(k \text{ grad } T) \cdot n = -k \frac{\partial T}{\partial n} = \mathbf{N}(x, T) \quad \text{for } x \text{ on } \Gamma_2 \]

(2.19)

We recall that \(\Gamma_1 \cup \Gamma_2 = \Gamma, \Gamma_1 \cap \Gamma_2 = 0 \) and that \(f, \mathbf{N} \) will be prescribed functions. The application of particular boundary conditions can be achieved by appropriate definition on \(\Gamma_1 \) and \(\Gamma_2 \) and the specification of the values \(f \) and \(\mathbf{N} \).
2.5.1 The use of Four-noded Rectangular Elements

Consider again the solution of the heat conduction problem defined by equations (2.17)-(2.19), over the rectangular domain Ω defined by $0 \leq x \leq L_x$, $0 \leq y \leq L_y$. In this case, the domain is subdivided to create a mesh of non-overlapping four-noded rectangular elements, as shown in Figure 2-3. As before, the nodes and the elements are numbered. Figure 2-4 shows a typical element e with nodes which are locally numbered 1, 2, 3, 4 and which are globally numbered I, J, K, L. If the element is of length h_{xe} in the x direction and of length h_{ye} in the y direction, the standard square bilinear element can be mapped exactly into this element e by the mapping

$$
\begin{align*}
 x &= \sum_{j=1}^{4} x_{je} N_j(\xi, \eta) = x_i + \frac{h_{xe}}{2} + \frac{h_{xe} \xi}{2} \\
 y &= \sum_{j=1}^{4} y_{je} N_j(x, y) = y_j + \frac{h_{ye}}{2} + \frac{h_{ye} \eta}{2}
\end{align*}
$$

(2.20)

Since

$$
\begin{align*}
 x_j &= x_K = x_j + h_{xe} \\
 y_L &= y_K = y_j + h_{ye}
\end{align*}
$$

(2.21)
Figure 2-3: Discretisation of a domain using four-noded rectangular elements

Figure 2-4: A typical rectangular element e with local and global node numbers

Over this element, we work with trial functions
\[\hat{T} = \sum_{j=1}^{4} T_{je} N_j(\xi, \eta) \]

(2.22)

and the finite element approximate solution is determined from the requirement that

\[\int_{e} \text{grad} \hat{T} \cdot \text{grad} N_i \, dx \, dy = \int_{e} QN_i \, dx \, dy - q_i \]

(2.22a)

If, as in Figure 2-4, the sides of the element are numbered 1, 2, 3 and 4, then we can write

\[q_i = \int_{\Gamma} N_i \hat{\eta}d\Gamma = \sum_{j=1}^{4} \int_{\Gamma} N_j \hat{\eta}d\Gamma \]

(2.22b)

where, \(\hat{\eta} \) is unknown on \(\Gamma_1 \) and \(\hat{\eta} = \chi \) on \(\Gamma_2 \). Inserting the assumed expression for \(\hat{T} \) from equation (2.22), leads to the equations

\[\sum_{j=1}^{4} \left[\int_{e} k \text{grad} N_j \cdot \text{grad} N_i \, dx \, dy \right] T_j = \int_{e} QN_i \, dx \, dy - q_i \quad i = 1, 2, 3, 4 \]

(2.22c)

or, with the function \(Q \) interpolated in terms of its nodal values

\[\sum_{j=1}^{4} \left[\int_{e} k \text{grad} N_j \cdot \text{grad} N_i \, dx \, dy \right] T_j = \sum_{j=1}^{4} \left[\int_{e} N_j N \, dx \, dy \right] Q_j - q_i \quad i = 1, 2, 3, 4 \]

(2.22d)

We rewrite these integrals, using the mapping of Eq. (2.20), in the form

\[\frac{1}{h_{xe} h_{ye}} \sum_{j=1}^{4} \left[\int_{-1}^{1} \int_{-1}^{1} k \left(h_{xe}^2 \frac{\partial N_j}{\partial \xi} \frac{\partial N_i}{\partial \xi} + h_{ye}^2 \frac{\partial N_j}{\partial \eta} \frac{\partial N_i}{\partial \eta} \right) \, d\xi \, d\eta \right] T_j \]

\[= \frac{h_{xe} h_{ye}}{4} \sum_{j=1}^{4} \left[\int_{-1}^{1} \int_{-1}^{1} N_j N_i \, d\xi \, d\eta \right] Q_j - q_i \quad i = 1, 2, 3, 4 \]

(2.22e)

And it is then apparent, from equations (2.22a)-(2.22e), that the approximation over the element is completed by the solution of the matrix equation system

\[K_e T_e = M_e Q_e - q_e \]

(2.23)

In this case the vectors \(T_e, Q_e \) and \(q_e \) are given by

\[T_e = \begin{bmatrix} T_{1e} \\ T_{2e} \\ T_{3e} \\ T_{4e} \end{bmatrix}, \quad Q_e = \begin{bmatrix} Q_{1e} \\ Q_{2e} \\ Q_{3e} \\ Q_{4e} \end{bmatrix}, \quad q_e = \begin{bmatrix} q_{1e} \\ q_{2e} \\ q_{3e} \\ q_{4e} \end{bmatrix} \]

(2.24)
and the element stiffness and mass matrices are as defined in equations (2.25) and (2.26).

\[
\mathbf{K}_e = \begin{bmatrix}
\frac{h_{xe}^2 + h_{ye}^2}{2} & \frac{h_{xe}^2 - h_{ye}^2}{2} & -\frac{h_{xe}^2 + h_{ye}^2}{2} & -\frac{h_{xe}^2 + h_{ye}^2}{2} \\
\frac{h_{xe}^2 - h_{ye}^2}{2} & \frac{h_{xe}^2 + h_{ye}^2}{2} & -\frac{h_{xe}^2 + h_{ye}^2}{2} & -\frac{h_{xe}^2 + h_{ye}^2}{2} \\
-\frac{h_{xe}^2 + h_{ye}^2}{2} & -\frac{h_{xe}^2 + h_{ye}^2}{2} & \frac{h_{xe}^2 - h_{ye}^2}{2} & \frac{h_{xe}^2 - h_{ye}^2}{2} \\
-\frac{h_{xe}^2 + h_{ye}^2}{2} & -\frac{h_{xe}^2 + h_{ye}^2}{2} & \frac{h_{xe}^2 - h_{ye}^2}{2} & \frac{h_{xe}^2 - h_{ye}^2}{2}
\end{bmatrix}
\]

\[\text{…….. (2.25)}\]

and

\[
\mathbf{M}_e = \frac{h_{xe} h_{ye}}{36} \begin{bmatrix}
4 & 2 & 1 & 2 \\
2 & 4 & 2 & 1 \\
1 & 2 & 4 & 2 \\
2 & 1 & 2 & 4
\end{bmatrix}
\]

\[\text{……………………………. (2.26)}\]

The equations for each element in turn are obtained from this general equation set by relating the local node numbers to the appropriate global node numbers and employing the relevant element length and conductivity in each case. This process can be illustrated by demonstrating the formation of the equation corresponding to a typical interior node for the mesh shown in Figure 2-3. With the local and global node numbers for each element related according to

<table>
<thead>
<tr>
<th>element</th>
<th>local node 1</th>
<th>local node 2</th>
<th>local node 3</th>
<th>local node 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>11</td>
</tr>
</tbody>
</table>
we select node 7 as a typical interior node and note that it belongs to the four elements numbered 1, 2, 5 and 6. We therefore need to examine the element equation (2.23) for each of these elements and identify the component corresponding to node 7 in each case.

Assuming that \(h_{xe} = h_{ye} = h \), the equations corresponding to node 7 can be seen to be

Element 1

\[
\frac{k_1}{3} \left[-T_1 - \frac{T_2}{2} + 2T_7 - \frac{T_6}{2} \right] = \frac{h^2}{36} \left[Q_1 + 2Q_2 + 4Q_7 + 2Q_6 \right] - q_{7(1)} \quad \text{............... (2.27a)}
\]

Element 2

\[
\frac{k_2}{3} \left[-T_2 - \frac{T_3}{2} - \frac{T_8}{2} + 2T_7 \right] = \frac{h^2}{36} \left[2Q_2 + Q_3 + 2Q_8 + 4Q_7 \right] - q_{7(2)} \quad \text{............... (2.27b)}
\]

Element 5

\[
\frac{k_5}{3} \left[-\frac{T_8}{2} + 2T_7 - \frac{T_{12}}{2} - T_{11} \right] = \frac{h^2}{36} \left[2Q_8 + 4Q_7 + 2Q_{12} + Q_{11} \right] - q_{7(5)} \quad \text{............... (2.27c)}
\]

Element 6
\[
\frac{k_6}{3} \left[2T_7 - \frac{T_8}{2} - T_{11} - \frac{T_{12}}{2} \right] = \frac{h^2}{36} \left[4Q_7 + 2Q_8 + Q_{11} + 2Q_{12} \right] - q_{7(6)} \]

(2.27d)

and the assembled equation for node 7 is obtained by adding these four equations together and using the continuity of flux requirement to set

\[
q_{7(1)} + q_{7(2)} + q_{7(5)} + q_{7(6)} = 0 \]

(2.28)

This equation is valid provided that there is no source or sink of heat at this node.

Node 15 can be regarded as a typical node on the boundary and it can be seen to belong to elements 8 and 12 only. Considering each of these elements in turn, we find that the equations corresponding to node 15 are

\textit{From element 8:}

\[
\frac{k_8}{3} \left[-T_9 - \frac{T_{10}}{2} + 2T_{15} - \frac{T_{14}}{2} \right] = \frac{1}{36} \left[Q_9 + 2Q_{10} + 4Q_{15} + 2Q_{14} \right] - q_{15(8)} \]

(2.29a)

\textit{From element 12:}

\[
\frac{k_{12}}{3} \left[- \frac{T_{14}}{2} + 2T_{15} - \frac{T_{20}}{2} - T_{19} \right] = \frac{1}{36} \left[2Q_{14} + 4Q_{15} + 2Q_{20} + Q_{19} \right] - q_{15(12)} \]

(2.29b)

Adding these two equations produces the assembled equation for node 15. we note that in this case

\[
q_{15(8)} + q_{15(12)} = \int_{(15-19)+(15-20)} \chi N_{15} d\Gamma \]

(2.30)
2.6 Time Stepping Methods for Heat Transfer

The majority of engineering problems are transient in nature and we are required to solve the time-dependent equation, which yield the solution at various times. In addition to the boundary conditions at any time, we are typically given the initial state of system, at time \(t = 0 \). Transient problems can therefore be termed \textit{initial value problems}. The transient heat conduction problem is given by the equation

\[
\rho c \frac{\partial T}{\partial t} = \text{div}(k \text{ grad} T) + Q \quad \text{................................. (2.31)}
\]

Application of the finite element spatial discretization yields the matrix equation system

\[
\mathbf{M} \dot{\mathbf{T}} + \mathbf{K} \mathbf{T} = \mathbf{f} \quad \text{................................. (2.32)}
\]

where \(\mathbf{M} \) is the capacitance matrix, \(\mathbf{K} \) is the conductance matrix and \(\dot{T} \) is the temperature differentiated with respect to time.

Although an analytical solution of (2.32) is possible for simplified, linear cases, it is more usual for the system of ordinary differential equations to be discretised in time, from which solutions at various times can be obtained. Since the original partial differential equation becomes a discrete set of ordinary differential equations, the process is known as partial discretisation.

Two techniques are employed to fully discretise the system of equations: the finite difference method and the finite element method.

2.6.1 Finite element time stepping

In order to produce a finite element algorithm, we shall discretise the
temperature in time by the normal finite element procedure, i.e.

\[
T = \sum N_i(t)T^i \quad \text{... (2.33)}
\]

The differential equation given by (2.31) is first order, with respect to the time derivative. It is therefore only necessary to provide first-order (i.e. linear) shape functions, \(N_i(t)\), in time. It should also be noted at this stage that \(N_i\) are assumed to be the same for each component of \(T\) and are therefore scalar. If the nodal temperature values change from \(T^n\) to \(T^{n+1}\) over a time step of length \(\Delta t\), the shape functions are given by

\[
N_n = 1 - \xi \quad \quad N_{n+1} = \xi \quad \text{.......................... (2.34)}
\]

where \(\xi\) is a local variable varying between 0 and 1 and is given by

\[
\xi = \frac{t}{\Delta t}
\]

Hence the temporal derivatives of the shape functions are given by

\[
\dot{N}_n = -\frac{1}{\Delta t} \quad \quad \dot{N}_{n+1} = \frac{1}{\Delta t} \quad \text{.......................... (2.35)}
\]

The problem can now be developed in two different ways. The weighted residual method can be applied in the normal manner, or the error with respect to \(T^{n+1}\) can be minimized to produce a least squares algorithm. We consider each of these methods in turn.

2.6.1.1 Weighted Residual Method

The discretisation of the equation system (2.32) in time produces

\[
M(T^nN_n + T^{n+1}N_{n+1}) + K(T^nN_n + T^{n+1}N_{n+1}) = f \quad \text{.............................. (2.36)}
\]

Employing the usual weighted residual method in (2.36) then gives
\[
\int_0^1 \left[M(T^n N_n + T^{n+1} N_{n+1}) + K(T^n N_n + T^{n+1} N_{n+1}) - f \right] d\xi = 0 \quad \text{............ (2.37)}
\]

Substituting in the expressions for the shape functions, (2.34), and their derivatives, (2.35), then leads to

\[
\left(\frac{M}{\Delta t} + K\theta \right) T^{n+1} = \left(\frac{M}{\Delta t} - K(1 - \theta) \right) T^n + \hat{f} \quad \text{......................... (2.38)}
\]

where

\[
\theta = \frac{\int_0^1 W_j \xi d\xi}{\int_0^1 W_j d\xi}, \quad \hat{f} = \frac{\int_0^1 W_j f d\xi}{\int_0^1 W_j d\xi}
\]

If the same spatial interpolation is used for both \(f \) and \(T \), then \(\hat{f} \) is given by

\[
\hat{f} = \theta T^n + (1 - \theta) T^{n+1} \quad \text{.. (2.39)}
\]

2.6.1.2 Least Squares Method

A least squares algorithm is derived by utilizing a functional that minimizes the squares of the error in the solution at the new time step, \(T^{n+1} \). Therefore, across each time step, i.e. between \(n \) and \(n+1 \), we must minimize the functional

\[
\pi = \int_0^1 \left[M(T^n \dot{N}_n + T^{n+1} \dot{N}_{n+1}) + K(T^n N_n + T^{n+1} N_{n+1}) - f \right]^2 d\xi \quad \text{......... (2.40)}
\]

By noting that, for any of the vectors above, we can write

\[
X^2 = X^T \cdot X
\]

The resulting least squares scheme is given by
26

\[
\begin{bmatrix}
\frac{M^T \cdot M}{\Delta t} + \left(\frac{K^T \cdot M + M^T \cdot K}{2} \right) + \frac{K^T \cdot K \Delta t}{3}
\end{bmatrix}
T_n^{n+1}
\]
\[
= \left[\frac{M^T \cdot M}{\Delta t} + \left(\frac{K^T \cdot M - M^T \cdot K}{2} \right) - \frac{K^T \cdot K \Delta t}{6} \right]T_n^n - K^T \int_0^1 f \xi \frac{d \xi}{\Delta t^2} - M^T \int_0^1 f \frac{d \xi}{\Delta t} \quad \ldots \ldots (2.41)
\]

Although computationally more expensive, due to the greater number of matrix multiplications performed, this algorithm has been demonstrated to exhibit exceptional accuracy. Note, also, that even if the individual matrices, \(K \) and \(M \), are unsymmetrical, all the matrix products in the algorithm are symmetric.

2.7 Nonlinear Heat Conduction Analysis

Transient problems are propagating problems. Knowing the temperature distribution at a particular instant, we are interested to determine the temperature distribution at a later time.

2.7.1 Application of Galerkin’s Method to nonlinear transient heat conduction problems

Governing Equation with initial and Boundary conditions

Non-linear transient heat conduction in a stationary medium is governed by

\[
\frac{\partial}{\partial x} \left(k(T) \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k(T) \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k(T) \frac{\partial T}{\partial z} \right) + Q = \rho c \frac{\partial T}{\partial t} \quad \ldots \ldots (2.42a)
\]

where \(k(T) \) is a function of the temperature. In terms of the enthalpy, equation (2.42a) can be modified to give
\[
\frac{\partial}{\partial x} \left[\frac{k(T)}{\rho c} \frac{\partial H}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{k(T)}{\rho c} \frac{\partial H}{\partial y} \right] + \frac{\partial}{\partial z} \left[\frac{k(T)}{\rho c} \frac{\partial H}{\partial z} \right] + Q = \rho c \frac{\partial H}{\partial t} \tag{2.42b}
\]

where

\[
H_x - H_1 = \int_{t_1}^{t_2} \rho c dT \tag{2.42c}
\]

The boundary conditions of the problem are

\[
T = T_b \quad \text{on} \quad \Gamma_b \tag{2.43a}
\]

\[
k(T) \frac{\partial T}{\partial x} l_x + k(T) \frac{\partial T}{\partial y} l_y + k(T) \frac{\partial T}{\partial z} l_z + q + \alpha(T - T_\infty) = 0 \quad \text{on} \quad \Gamma_q \tag{2.43b}
\]

where \(l_x, l_y, l_z\) are direction cosines of outward normal, \(\alpha\) = heat transfer coefficient, \(T_\infty\) = ambient temperature. The initial condition for the problem is

\[
T = T_0 \quad \text{at} \quad t = 0 \tag{2.43c}
\]

Galerkin’s method

Galerkin’s approach is adopted here to solve equation (2.42), subject to the various conditions of equations (2.43a - 2.43c). The solution domain is divided into finite elements in space. The temperature is approximated within each element by

\[
T(x, y, z) = \sum_{i=1}^{m} N_i(x, y, z) T(t) \tag{2.44}
\]

where \(N_i\) are the usual shape functions defined piece-wise, element-by-element, \(T(t)\) is the nodal temperatures considered to be function of time and \(m\) is the number of nodes in the element considered.

The Galerkin representation of the heat conduction problem (equation (2.42)) is
\[
\int N_i \left[\frac{\partial}{\partial x} \left(k_x(T) \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y(T) \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z(T) \frac{\partial T}{\partial z} \right) + Q - \rho c \frac{\partial T}{\partial t} \right] dxdydz = 0 \quad (2.45)
\]

Using integration by parts on the first three terms in equation (2.45), the equation simplifies to

\[
- \int \left[k_x(T) \frac{\partial T}{\partial x} \frac{\partial N_i}{\partial x} + k_y(T) \frac{\partial T}{\partial y} \frac{\partial N_i}{\partial y} + k_z(T) \frac{\partial T}{\partial z} \frac{\partial N_i}{\partial z} - N_i Q - N_i \rho c \frac{\partial T}{\partial t} \right] dxdydz

- \int N_i q d\Gamma_q - \int N_i \alpha(T - T_\alpha) d\Gamma_q = 0 \quad i = 1, 2, \ldots, m

\]

Inserting the temperature approximation, equation (2.46) simplifies to

\[
- \int \left[k_x(T) \frac{\partial N_j}{\partial x} \frac{\partial N_i}{\partial x} + k_y(T) \frac{\partial N_j}{\partial y} \frac{\partial N_i}{\partial y} + k_z(T) \frac{\partial N_j}{\partial z} \frac{\partial N_i}{\partial z} \right] dxdydz

- \int N_i \alpha N_j \{T\} dT_a + \int N_i Q dxdydz - \int N_i \rho c N_j dxdydz \frac{\partial \{T\}}{\partial t} - \int N_i q d\Gamma_q + \int N_i \alpha T_a d\Gamma_a = 0

\]

The above equation, (2.47), can be cast into a more convenient form as

\[
M \frac{dT}{dt} + KT = f \quad \ldots \ln
\[T = T^0 = (T_1^0, T_2^0, \ldots, T_m^0) \] \hspace{1cm} (2.49)

And obtain an improved solution \(T^1 \) by solving the equation

\[M \frac{dT^1}{dt} + K(T^0)T^1 = f^0 \] \hspace{1cm} (2.50)

The general iteration scheme

\[M \frac{dT^n}{dt} + K(T^{n-1})T^n = f^{n-1} \] \hspace{1cm} (2.51)

is then repeated until convergence, to within a suitable tolerance, is obtained.

PART - II

Finite Element Analysis of Heat Transfer Using ANSYS

2.8 Analysis Considerations

The distribution of the temperature field inside the pressure vessel is the main foundation of the thermal design process, because we will include the results found in these analyses in the optimization tool. To get an idea of the temperature distribution field inside the pressure vessel, when no exact theoretical solution is available, we applied the finite element analysis in heat transfer. We used ANSYS software for this finite element analysis.

The main considerations for the ANSYS analysis are:

1) The problem is taken as an axisymmetric analysis.

2) The whole analysis process is based on 2D simulation. We took into consideration all the symmetries presented by the
problem for which the corresponding boundary conditions are written clearly from a mathematical point of view.

3) A 3D simulation was run to check whether the 2D simulation is in accord with the 3D.

4) Only heat conduction is considered.

2.9 Describing the geometry

For this analysis a very simplified geometric model of the original turbine is considered. The geometric model is generated in the ANSYS using ANSYS modeling. The geometric model for the ANSYS 2D modeling is shown below in Figure 2-5.

The materials considered here are:

1) Air

2) 316 Stainless Steel

3) Static foam

The temperature distribution in the air gap inside the pressure vessel is sought out. The analysis is transient and non-linear. The air temperature is taken as temperature dependent, which makes the problem nonlinear.
Figure 2-5: The geometric model for the 2D analysis showing all the areas
2.10 Meshing

![Meshing of the design domain](image)

Figure 2-6: Meshing of the design domain

2.11 Axisymmetric analysis

For the simplification of the design domain we have considered the geometry as an axisymmetric problem, that is, a problem in which the geometry, loadings, boundary conditions and materials are symmetric with respect to an axis is one that can be solved as an axisymmetric problem instead of as a three dimensional problem. The axis of symmetry is taken as the global y-axis.

The axisymmetric model created using ANSYS modeling is shown in the Figure 2-7.
Figure 2-7: Axisymmetric ANSYS model
2.12 Initial and boundary conditions

Boundary conditions:

Two types of boundary conditions are considered here:

1) Temperature on the outer surface of the pressure vessel (°C)
2) Heat flux boundary condition on the motor surface (W/m²)

Initial Condition:

The initial condition is taken as the ambient ocean water temperature.

2.13 ANSYS Results

The final temperature distribution of the axisymmetric domain in 2D and 3D cases after applying initial and boundary conditions are shown in the Figures 2-8 and in 2-9.

2.14 Fin Solution

The fin will act as heat sink. The fin (it’s a ring fin) solution technique is heuristic solution technique, that is, it involves trial and error method. Since we have information about the final temperature distribution inside the pressure vessel and we want to keep it below 70°C (343 K), the heuristic design procedure is chosen.

Run -1: Since, form the 2D simulation the back side of the motor appears to be the hottest, first we put a single fin (with the calculated dimensions) on the back side of the motor and run the simulation. The maximum temperature is now reduced to 399.52°C, which is still a lot higher than our safe target temperature 323°C.

Run – 2: The single fin is splitted into two equal parts and one is put on back side and one on around the gear box. The temperature is reduced to 359°C.
And so on.

After several these types of runs and splitting the fins and moving back and forth we finally came up with the following temperature distribution with five tin fins:

![Figure 2-8: Temperature distribution (2D) after 24 hours (in °K) without any fin](image-url)
Figure 2-9: Final temperature distribution (3D) after 24 hours (temp are in °K)

It is seen that the final temperature distribution is pretty close to the target temperature after using five fins.
2.15 Chapter Summary

In this chapter a finite element modeling of the heat transfer in the ocean current turbine is described. Finite element analysis is an approximate numerical method. The numerical simulation of heat transfer problems is now a standard part of engineering practice. Before applying this numerical approximate solution, experimental and analytical validation must be carried out. But the analytical solution, which can be used to validate the finite element method and other numerical methods, is rather limited in the literature, especially for the problem considered here.

Figure 2-10: Final temperature distribution with five tin fins (temps are in K)
In fact, everything depends on the problem to solve. We took into consideration all the symmetries presented by the problem for which the corresponding boundary conditions are written clearly from a mathematical point of view. We made use of revolution symmetry, which is the most productive one as it allows us to carry out 3D analysis on a plane model representing a meridian section of the studied structure. In the case of axisymmetric analysis, a 2D model is sufficient (in the case of repetitive structure in one direction for example). Analysis of 2D model is preferable as the analysis and interpretation of results are always easier than a 3D model.

At the last point it can be said that among the various numerical techniques available today, the finite element method is the most widespread owing to:

- its general fields of application (thermal, electromagnetics, structural mechanics, fluid mechanics, etc.),
- its capacity to treat problems with complex geometries,
- its easy implementation due to automation.
CHAPTER 3
NEURAL NETWORK ANALYSIS of HEAT TRANSFER

3.1 Introduction

The problem of complex geometry and associated boundary conditions for calculating heat transfer can be alleviated by using artificial neural networks (ANNs). ANNs have been developed in recent years and used successfully in many application areas, thermal engineering (Sen and Yang, 1999) is one of them. Some examples are heat transfer data analysis (Thibault and Grandjean, 1991), manufacturing and materials processing (Mahajan and Wang, 1993; Marwah et al., 1996), solar receivers (Fowler et al., 1997), convective heat transfer coefficients (Jambunathan, et al., 1996), and HVAC control (Jeannette et al., 1998). Section 1.2.1 describes the application of ANN in thermal engineering. The most attractive advantage of the method is that it allows the modeling of complex systems without requiring detail knowledge of the physical processes. Because of this, and it’s inherent characteristics for handling incomplete information, generalizing the acquired knowledge, and tolerance for imprecision, ANNs may provide attractive options to capture the intrinsic patterns that govern the behavior of heat transfer in complex domain.

Thus, the current chapter concentrates on using ANNs for the approximation of the performance of heat transfer inside the pressure vessel when different numbers
of fins are used. As has been the case throughout this document, ANSYS data related to this problem, will be used here. First, some generalities about the ANN will be given. Later the focus will be on the issue of separation of data for training and testing the neural network. Finally, the maximum temperature generated inside the pressure vessel using different numbers of fins will be computed using this soft computing approach.

3.2 Artificial Neural Network:

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. A great deal of literature is available explaining the basic construction and similarities to the biological neurons. The discussion here is limited to a basic introduction of several components involved in the ANN implementation.

Neural networks are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the connections between elements largely determine the network function. A neural network can be trained to perform a particular function by adjusting the values of the connections (weights) between elements.

Typically, neural networks are adjusted, or trained, so that a particular input leads to a specific target output. The next figure illustrates such a situation. There, the network is adjusted, based on a comparison of the output and the target, until the network output matches the target. Typically, many such input/target pairs are needed to train a network.
Neural networks have been trained to perform complex functions in various fields, including pattern recognition, function approximation, identification, classification, speech, vision, and control systems. Neural networks can also be trained to solve problems that are difficult for conventional computers or human beings.

3.2.1 Neuron Model:

3.2.1.1 Simple Neuron:

A single-input neuron is shown in Figure 3-2. A neuron with a single scalar input and no bias appears on the left.
Figure 3-2: Single-Input Neuron

The scalar input p is transmitted through a connection that multiplies its strength by the scalar weight w to form the product wp, again a scalar. Here the weighted input wp is the only argument of the transfer function f, which produces the scalar output a. The neuron on the right has a scalar bias, b. The bias can be viewed as simply being added to the product wp as shown by the summing junction or as shifting the function f to the left by an amount b. The bias is much like a weight, except that it has a constant input 1.

The neuron output is calculated as

$$a = f(wp + b)$$ \hspace{1cm} (3.1)

The transfer function net input n, again a scalar, is the sum of the weighted input wp and the bias b. The sum is the argument of the transfer function f. Here f is a transfer function, typically a step function or a sigmoid function, that takes the argument n and produces the output a. Note that w and b are both adjustable scalar parameters of the neuron. The central idea of neural network is that such parameters can be adjusted so that the network exhibits some desired or interesting behavior. Thus, a network can be trained to do a particular job by adjusting the weight or bias parameters, or perhaps the network itself will adjust these parameters to achieve some desired end.
3.2.1.2 Neuron with Vector Input:

Typically, a neuron has more than one input. A neuron with R-input is shown in Figure 3-3. Here the individual element inputs

\[p_1, p_2, \ldots, p_R \]

(3.2)

![Figure 3-3: Simple neuron with vector input](image)

are multiplied by weights

\[w_{1,1}, w_{1,2}, \ldots, w_{1,R} \]

(3.3)

and the weighted values are fed to the summing junction. Their sum is simply \(Wp \), the dot product of the (single row) matrix \(W \) and the vector \(p \).

The neuron has a bias \(b \), which is summed with the weighted inputs to form the net input \(n \). This sum, \(n \), is the argument of the transfer function \(f \).

\[n = w_{1,1}p_1 + w_{1,2}p_2 + \ldots + w_{1,R}p_R + b \]

(3.4)

The expression can be written in matrix form:

\[n = Wp + b \]

(3.5)

where the matrix \(W \) for the single neuron case has only one row.
Now the neuron output can be written as

\[a = f(Wp + b) \] \hspace{.5cm} \text{(3.6)}

3.2.1.3 Transfer Functions:

The transfer functions in Figures 3-2 and 3-3 may be a linear or nonlinear function of \(n \).

A particular transfer function is chosen to satisfy some specification of the problem that the neuron is attempting to solve.

A variety of transfer functions can be found in the text books. Here the sigmoid transfer function is used.

Log-Sigmoid Transfer Function:

The \textit{log-sigmoid transfer function} is shown in Figure 3-4.

This transfer function takes the input (which may have any value between plus and minus infinity) and squashes the output into the range 0 to 1, according to the expression:

\[a = \frac{1}{1 + e^{-n}} \] \hspace{.5cm} \text{(3.7)}

The log-sigmoid transfer function is commonly used in multilayer networks.
that are trained using the backpropagation algorithm.

3.3 The Network Architecture

The network architecture or topology (including: number of nodes in hidden layers, network connections, initial weight assignments, activation functions) plays a very important role in the performance of ANN, and usually depends on the problem at hand. In most cases, setting the correct topology is a heuristic model selection. Whereas the number of input and output layer nodes is generally suggested by the dimensions of the input and the output spaces. Too many parameters lead to poor generalization (over fitting), and too few parameters result in inadequate learning (under fitting) (Duda et al. 2001).

Every ANN consists of at least one hidden layer in addition to the input and the output layers. The number of the hidden units governs the expressive power of the net and thus the complexity of the decision boundary. For well-separated classes fewer units are required and for highly interspersed data more units are required. The number of synaptic weights is based on the number of hidden units representing the degrees of freedom of the network. Hence, we should have fewer weights than the number of training points. As a rule of thumb, the number of hidden units is chosen as $n/10$, where n is the number of training points (Duda et al. 2001, Lawrence et al. 1997). But this may not always hold true and a better tuning might be required depending on the problem.

Commonly one neuron, even with many inputs, may not be sufficient. We might need five or ten, operating in parallel, in what we will call a “layer”. The concept of layer is discussed below.
3.3.1 A Layer of Neurons

3.3.1.1 Single Layer

A single-layer network of \(S \) neurons is shown in Figure 3-5. Note that each of the \(R \) inputs is connected to each of the neurons and that the weight matrix now has \(S \) rows.

\[
\begin{align*}
\sum & \quad f \\
\sum & \quad f \\
\sum & \quad f
\end{align*}
\]

\[a = f(Wp + b)\]

Figure 3-5: Layers of S Neurons

The layer includes the weight matrix, the summers, the bias vector \(b \), the transfer function boxes and the output vector \(a \).

Each element of the input vector \(p \) is connected to each neuron through the weight matrix \(W \). Each neuron has a bias \(b_i \), a summer, a transfer function \(f \) and an output \(a_i \). Taken together, the outputs from the output vector \(a \).

The input vector elements enter the network through the weight matrix \(W \):
3.3.1.2 Multiple Layers of Neurons

In multiple-layer networks, each layer has its own weight matrix \(W \), its own bias vector \(b \), a net input vector \(n \) and an output vector \(a \). The three hidden-layer network is shown in Figure 3-6.

As shown, there are \(R \) inputs, \(S^1 \) neurons in the first hidden-layer, \(S^2 \) neurons in the second hidden-layer, etc. As noted, different layers can have different numbers of neurons.

The outputs of layers one and two are the inputs for layers two and three, respectively. Thus layer 2 can be viewed as a one-layer network with \(R = S^1 \) inputs, \(S = S^2 \) neurons, and a \(S^1 \times S^2 \) weight matrix \(W^2 \). The input of layer 2 is \(a^1 \), and the output is \(a^2 \).

A layer whose output is the network output is called an output layer. The other layers are called hidden layers. The network shown in Figure 3-6 has an output layer (layer 5) and three hidden layers (layers 1, 2 and 3).

Multilayer networks are more powerful than single-layer networks. For instance, a two-layer network having a sigmoid first layer and a linear second layer can be trained to approximate most functions arbitrarily well. Single-layer networks can not do
At this point the number of choices to be made in specifying a network may look overwhelming, so let us consider this topic. The problem is not as bad as it looks. First, recall that the number of inputs to the network and the number of outputs from the network are defined by external problem specifications. So if there are four external variables to be used as inputs, there are four inputs to the network. Similarly, if there are to be seven outputs from the network, there must be seven neurons in the output layer. Finally, the desired characteristics of the output signal also help to select the transfer function or the output layer. If an output is to be either -1 or 1, then a symmetrical hardlimit transfer function should be used. Thus, the architecture of a single-layer network is almost completely determined by problem specifications, including the specific number of inputs and outputs and the particular output signal characteristic.

Now, what if we have more than two layers? Here the external problem does not tell us directly the number of neurons required in the hidden layers. In fact, there are few problems for which one can predict the optimal number of neurons needed in a hidden layer. This problem is an active area of research.
Figure 3-6: Three (hidden)-Layer Network
3.3.2 Learning Rules

By *learning rule* we mean a procedure for modifying the weights and biases of a network. (This procedure may also be referred to as a training algorithm.) The purpose of the learning rule is to train the network to perform some task. There are many types of neural network learning rules. They fall into three broad categories: supervised learning, unsupervised learning and reinforcement (or graded) learning.

In our case we used the backpropagation learning rule which is a supervised learning rule.

3.3.2.1 Supervised Learning Training Set

In *supervised learning*, the learning rule is provided with a set of examples (the *training set*) of proper network behavior:

\[
\begin{align*}
(p_1, t_1), (p_2, t_2), \ldots, (p_Q, t_Q)
\end{align*}
\]

(3.9)

where \(p_q \) is an input to the network and \(t_q \) is the corresponding correct (target) output.

As the inputs are applied to the network, the network outputs are compared to the targets. The learning rule is then used to adjust the weights and biases of the network in order to move the network outputs closer to the targets.

3.4 Separation of Data for Training and Testing and Network Performance

After a number of trails, the ANN structure chosen for the present analysis consists of five layers: the input layer at the left, the output layer at the right and three hidden layers. This 5-17-14-14-1 configuration (the next chapter describes the procedure how did we
come up with this architecture), where the numbers stand for the number of neurons in each layer, is similar to the schematic shown in Figure-3-6, which is used in the prediction of maximum temperature analysis. The inputs to the network correspond to the numbers and the locations of fins. The output is the maximum temperature T_{max}.

A total of $M = 942$ ANSYS runs were developed for different numbers of fins and for different positions (394 runs with 5 fins, 201 runs with 4 fins, 194 runs with 3 fins and 153 runs with 2 fins). The data can be separated in different ways into training and testing data. For example, someone can use 60% of the total data sets available for training and the rest for testing. This has two disadvantages: first, the data set available for training is smaller than the total amount of information available so that the neural network model is not the best possible, and second, if the training data do not include the extreme values the estimation may fall in the extrapolated range and hence are less reliable. The issue of separating the complete data into training and testing sets is further analyzed in the following way.

The M available sets of ANSYS data are first randomly sorted to avoid introducing any bias in the selection process and their order is then fixed. Only the first M_a of these are chosen for training and the rest $M_b = M - M_a$ kept aside for the moment. The fraction used for training is thus $P_s = \frac{M_a}{M}$.

Performance Index:
The backpropagation algorithm for multilayer networks is a generalization of the least mean square (LMS) algorithm, and both algorithms use the same performance index: mean square error. The algorithm is provided with a set of examples of proper network
behavior:

\[\{p_1, t_1\}, \{p_2, t_2\}, \ldots, \{p_Q, t_Q\} \] \hspace{1cm} (3.10)

where \(p_q \) is an input to the network, and \(t_q \) is the corresponding target output. As each input is applied to the network, the network output is compared to the target. The algorithm should adjust the network parameters in order to minimize the mean square error:

\[
F(x) = E[e^2] = E[(t - a)^2] \hspace{1cm} (3.11)
\]

where \(x \) is the vector of network weights and biases. If the network has multiple outputs this generalizes to:

\[
F(x) = E[e^T e] = E[(t - a)^T (t - a)] \hspace{1cm} (3.12)
\]

We will approximate the mean square error by

\[
\hat{F}(x) = (t(k) - a(k))^T (t(k) - a(k)) = e^T(k) e(k)
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} (e_i)^2 = \frac{1}{N} \sum_{i=1}^{N} (t_i - a_i)^2 \hspace{1cm} (3.13)
\]

where the expectation of the squared error has been replaced by the squared error at iteration \(k \).

The steepest descent algorithm for the approximate mean square error is

\[
w_{i,j}^m(k+1) = w_{i,j}^m(k) - \alpha \frac{\partial \hat{F}}{\partial w_{i,j}^m} \hspace{1cm} (3.14)
\]

\[
b_i^m(k+1) = b_i^m(k) - \alpha \frac{\partial \hat{F}}{\partial b_i^m} \hspace{1cm} (3.15)
\]

where \(\alpha \) is the learning rate.

The mean square error (MSE) is calculated at each cycle (epoch) of the training process in order to evaluate the performance of the network and to update the weights and biases.
using equations (3.14) and (3.15). Here $i = 1, \ldots, M_a$, where a_i are the predictions, and t_i are the ANSYS values of the maximum temperatures. The stopping criterion of the training process, however, is based on the absolute value of the mean square error. When these error levels off, i.e., the change of rate per cycle is less than 10%, the number of training cycles are recorded. The above is achieved with 100000 epochs, which is kept the same for the rest of the procedure.

After the training is finished, three different data sets are tested: (a) the same M_a data that were used for training are tested, (b) the M_b data left out of the training process are tested, and (c) the complete M data sets are tested. In each case the percentage error between the NN approximation and ANSYS values are calculated, being E_a, E_b and E, respectively. Without reordering the M datasets the procedure described above is repeated for different values of the percentage of splitting, i.e., $P_s = 10\%, 20\%, 30\%, \ldots, 90\%, 95\%$ and 99%. The exact shape of the error vs. P_s curve depends on the initial order of the data sets, but some general features can be identified.

To determine the overall characteristics of the error, the curves were calculated ten times and the results averaged to remove the influence of the initial random ordering of the data sets. Figure 3-7 shows the average error in prediction calculated in the three different ways as a function of the training fraction P_s. For any P_s, E_a is always small since the training and testing data are identical. At small values of P_s, E_b and E are both very large indicating that an insufficient fraction of the data has been used for training. As M_a increases, better predictions are obtained. Beyond $P_s = 60\%$ approximately the
differences in the prediction errors for all data sets are small. The same trend is observed for the \(\sigma_s \) which become smaller as \(P_s \to 100\% \), indicating that the prediction is somewhat insensitive to the initial random ordering of the data. Near the end, however, at \(P_s = 99\% \) for example, \(\sigma_b \) becomes large again because now \(M_b \) is very small and the error depends greatly on the data set that is picked for testing.

The following Table 3-1 shows the results obtained with various separation of data:

<table>
<thead>
<tr>
<th>% of Data</th>
<th>Performance (MSE)</th>
<th>Maximum Error (°C)</th>
<th>Standard Deviation (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_a)</td>
<td>(E_b)</td>
<td>(E)</td>
</tr>
<tr>
<td>10%</td>
<td>0.0005</td>
<td>1.5e-12</td>
<td>208.8371</td>
</tr>
<tr>
<td>20%</td>
<td>1.03</td>
<td>3.5364</td>
<td>506.9467</td>
</tr>
<tr>
<td>30%</td>
<td>1.61</td>
<td>6.6087</td>
<td>540.9679</td>
</tr>
<tr>
<td>40%</td>
<td>2.11</td>
<td>16.9856</td>
<td>178.4032</td>
</tr>
<tr>
<td>50%</td>
<td>2.75</td>
<td>12.0824</td>
<td>521.6405</td>
</tr>
<tr>
<td>60%</td>
<td>2.75</td>
<td>7.2591</td>
<td>126.4895</td>
</tr>
<tr>
<td>70%</td>
<td>8.00</td>
<td>38.2249</td>
<td>56.6727</td>
</tr>
<tr>
<td>80%</td>
<td>8.19</td>
<td>32.9067</td>
<td>33.8101</td>
</tr>
<tr>
<td>90%</td>
<td>8.02</td>
<td>20.0774</td>
<td>25.4156</td>
</tr>
<tr>
<td>95%</td>
<td>8.00</td>
<td>20.6020</td>
<td>39.2700</td>
</tr>
<tr>
<td>99%</td>
<td>8.00</td>
<td>16.4887</td>
<td>19.8923</td>
</tr>
</tbody>
</table>

Table 3-1: Standard deviation and maximum error for different % of data used
<table>
<thead>
<tr>
<th>% of Data</th>
<th>Performance (MSE)</th>
<th>Maximum Error (°C)</th>
<th>Mean Error (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E_a</td>
<td>E_b</td>
</tr>
<tr>
<td>10%</td>
<td>0.0005</td>
<td>1.4779e-012</td>
<td>208.8371</td>
</tr>
<tr>
<td>20%</td>
<td>1.03</td>
<td>3.5364</td>
<td>506.9467</td>
</tr>
<tr>
<td>30%</td>
<td>1.61</td>
<td>6.6087</td>
<td>540.9679</td>
</tr>
<tr>
<td>40%</td>
<td>4.11</td>
<td>16.9856</td>
<td>178.4032</td>
</tr>
<tr>
<td>50%</td>
<td>2.75</td>
<td>12.0824</td>
<td>521.6405</td>
</tr>
<tr>
<td>60%</td>
<td>2.75</td>
<td>7.2591</td>
<td>126.4895</td>
</tr>
<tr>
<td>70%</td>
<td>10.52</td>
<td>38.2249</td>
<td>56.6727</td>
</tr>
<tr>
<td>80%</td>
<td>8.02</td>
<td>32.9067</td>
<td>33.8101</td>
</tr>
<tr>
<td>90%</td>
<td>8.19</td>
<td>20.0774</td>
<td>25.4156</td>
</tr>
<tr>
<td>95%</td>
<td>8.00</td>
<td>20.6020</td>
<td>39.2700</td>
</tr>
</tbody>
</table>

Table 3-2: Mean error for different % of Data used

Figure 3-8 shows the comparison of the mean error and standard deviation vs. % of data used.

The results for various P_s are compared and are shown in the Figures 3-9 to 3-17.
Figure 3-7: ANN prediction error vs. percentage of data used

Figure 3-8: Standard Deviation Vs. % of data used
Figure 3-9: Testing of the NN with same set of training data from 10% to 40%

Figure 3-10: Testing of the NN with the leftout data ranging from 10% to 40%
Figure 3-11: Testing of the NN (trained with 10% - 40% data) with the total data

Figure 3-12: Testing of the NN with same set of training data from 40% to 70%
Figure 3-13: Testing of the NN with the leftout data ranging from 40% to 70%

Figure 3-14: Testing of the NN (trained with 40% - 70% data) with the total data
Figure 3-15: Testing of the NN with same set of training data from 70% to 99%

Figure 3-16: Testing of the NN with the leftout data ranging from 70% to 99%
3.5 Postprocessing the Data

The performance of a trained network can be measured to some extent by the errors on the training, validation, and test sets, but it is often useful to investigate the network response in more detail. One option is to perform a regression analysis between the network response and the corresponding targets. The MATLAB routine `postreg` will perform this analysis.

If we use the MATLAB `postreg` routine, the network output and the corresponding targets are passed to `postreg`. It returns three parameters. The first two, m and b, correspond to the slope and the y-intercept of the best linear regression relating targets to
network outputs. If there were a perfect fit (outputs exactly equal to targets), the slope would be one, and the y-intercept would be 0. For example, the post regression analysis is performed for the trained neural network with 99% of total data and is shown in the Figure 3-18. In this example, we can see that the numbers are very close. The third variable returned by the routine is the correlation coefficient (R-value) between the outputs and targets. It is a measure of how well the variation in the output is explained by the targets. If this number is equal to 1, then there is perfect correlation between targets and outputs. In the example, the number is very close to 1, which indicates a good fit.

3.6 Improving Generalization (Validation stop)

One of the problems that occur during neural network training is called overfitting. The error on the training set is driven to a very small value, but when new data is presented to the network the error is large. The network has memorized the training examples, but it has not learned to generalize to new situations.

One method for improving network generalization is to use a network that is just large enough to provide an adequate fit. The larger network we use, the more complex the functions the network can create. If we use a small enough network, it will not have enough power to overfit the data.

Unfortunately, it is difficult to know beforehand how large a network should be for a specific application. One of the methods for improving generalization is early stopping.

Early Stopping:

In this technique the available data is divided into three subsets. The first subset is the training set, which is used for computing the gradient and updating the network weights
and biases. The second subset is the validation set. The error on the validation set is monitored during the training process. The validation error normally decreases during the initial phase of training, as does the training set error. However, when the network begins to overfit the data, the error on the validation set typically begins to rise. When the validation error increases for a specified number of iterations, the training is stopped, and the weights and the biases at the minimum of the validation error are returned.

Figure 3-18: Post regression of the trained Neural Network
The test set error is not used during training, but it is used to compare different models. It is also useful to plot the test set error during the training process. If the error in the test set reaches a minimum at a significantly different iteration number than the validation set error, this might indicate a poor division of the data set. Figure 3-19 shows a sample training session.

Figure 3-19: Typical training session of a Neural Network
3.7 Summary

In this chapter, we presented briefly the concept of neural network in function approximation. It is apparent that a better understanding of the network’s performance and limitations would help researchers in analyzing real-world problems. The chapter describes the network performance based on initial randomness of the training data set and also shows the effect of separation of data on network performance. The relationship between neural network performance and the parameters that form the architecture of the neural network is complicated. The chapter presents the comparison between the results of percent of data used vs. percent of error prediction. The general conclusion is that the higher the percentage of data used for training the higher is the network performance and the lower is the mean square error. However, in MATLAB environment, the more a network is generalized the more difficult it is to achieve the lowest error.

In general, the architecture topology is selected by a trial and error process. The architecture 5-17-14-14-1 is finally used since the author has achieved the best performance with this topology and fixed it for further usage. This might be interesting for the future researchers to get better performance using smaller architecture than this present one. The smaller architecture will lower the memory requirement of the PCs and will significantly reduce the computational time.

Here we have used only feed-forward neural network. In future researches, the researchers might intend to apply various other networks and learning techniques, for example, nonmonotone neural networks, probabilistic neural networks, self-organized maps, recurrent networks and radial basis function networks.
As it is seen that the performance of an artificial neural network very much depends on its generalization capability, which in turn is dependent upon the data representation. One important characteristic of data representation is uncorrelated. In other words, a set of data presented to an artificial neural network should not consist of correlation information.
4.1 Maximum temperature Analysis using Neural Network

4.1.1 Network architecture

The analysis of maximum temperature considers the fully connected feedforward neural network. The architecture of this ANN, schematically illustrated in Figure 4-5, has one input layer, three hidden layers and one output layer. Also, the sigmoid activation function for the neurons in the hidden and output layers is used and the weights are adjusted by the backpropagation algorithm.

Choice of Network Architecture:

Multilayer networks can be used to approximate almost any function, if we have enough neurons in the hidden layers. However, we cannot say, in general, how many layers and how many neurons are necessary for adequate performance. A network with only two layers (input and output) can only represent the input with whatever representation already exists in the input data. Hence, if the data are discontinuous or nonlinearly separable, the innate representation is inconsistent, and the mapping can not be learned. Adding a third (middle) layer to the artificial neural network allows it to develop its own internal representation of this mapping. Having this rich and complex internal
representation capability allows the hierarchical network to learn any mapping not just linearly separable ones.

Some guidance to the number of neurons in the hidden layer is given by Kolmogorov’s theorem as it is applied to artificial neural networks. In any artificial neural network, the goal is to map any real vector of dimension m into any other real vector of dimension n. Let us assume that the input vectors are scaled to lie in the region from 0 to 1, but there are no constraints on the output vector. Then, Kolmogorov’s theorem tells us that a three-layer neural network exists that can perform this mapping exactly (not an approximation) and that the input layer will have m neurons, the output layer will have n neurons, and the middle layer will have $2m+1$ neurons. Hence, Kolmogorov’s theorem guarantees that a three-layer artificial neural network will solve all nonlinearly separable problems. what it does not say is that

1. this network is the most efficient one for this mapping,
2. a smaller network cannot also perform this mapping, or
3. a simpler network cannot perform the mapping just as well.

Unfortunately, it does not provide enough detail to find and build a network that efficiently performs the mapping we want. It does, however, guarantee that a method of mapping does exist in the form of an artificial neural network (Poggio and Girosi, 1990). For our case, we have started with an initial guess a 5-10-1 network and then used larger and larger networks until we were able to accurately present the function.

Figures 4-1 to 4-4 show the results obtained using different architectures with different number of neurons and different number of layers:
Figure 4-1: Network Responses of Architectures (a-top left corner) 5-10-1, (b-top right corner) 5-15-1, (c-bottom left corner) 5-17-1, and (d-bottom right corner) 5-10-10-1

Figure 4-2: Network Responses of Architectures (a-top left corner) 5-15-10-1, (b-top right corner) 5-15-14-1, (c-bottom left corner) 5-15-17-1, and (d-bottom right corner) 5-17-10-1
Figure 4-3: Network Responses of Architectures (top left corner) 5-17-14-1, (top right corner) 5-10-10-10-1, (bottom left corner) 5-14-14-17-1, and (bottom right corner) 5-17-14-14-1

Figure 4-4: Network Responses of Architectures (a-top left corner) 5-15-10-10-1, (b-top right corner) 5-17-10-10-1, (c-bottom left corner) 5-17-10-14-1, and (d-bottom right corner) 5-17-14-10-1
We have used the sigmoid neurons in all of the layers, that is, the transfer function for all the neurons used is log-sigmoid. We can see some architectures in which the network response did not give an accurate approximation to the desired function. This occurred because the capabilities of the network were inherently limited by the number of hidden neurons it contained. Finally, we see that the best approximation is given by the 5-17-14-14-1 architecture. This backpropagation algorithm produced the network parameters that minimized the mean square error. So we have saved this architecture and have used this architecture for our optimization algorithm.

The following Table 4-1 shows the numerical comparison for different network architectures we have tried for:

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>MSE</th>
<th>No of Epoch</th>
<th>Max error (C)</th>
<th>Standard Deviation (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10-1</td>
<td>578.41</td>
<td>119</td>
<td>250.69</td>
<td>34.87</td>
</tr>
<tr>
<td>5-15-1</td>
<td>601.53</td>
<td>250</td>
<td>260.54</td>
<td>33.54</td>
</tr>
<tr>
<td>5-17-1</td>
<td>590.65</td>
<td>239</td>
<td>259.74</td>
<td>30.96</td>
</tr>
<tr>
<td>5-10-10-1</td>
<td>580.30</td>
<td>279</td>
<td>252.36</td>
<td>25.66</td>
</tr>
<tr>
<td>5-15-10-1</td>
<td>306.32</td>
<td>996</td>
<td>133.78</td>
<td>11.81</td>
</tr>
<tr>
<td>5-17-10-1</td>
<td>170.56</td>
<td>487</td>
<td>86.38</td>
<td>10.16</td>
</tr>
<tr>
<td>5-15-14-1</td>
<td>650.63</td>
<td>442</td>
<td>275.04</td>
<td>26.38</td>
</tr>
<tr>
<td>5-17-14-1</td>
<td>156.36</td>
<td>1451</td>
<td>74.99</td>
<td>7.8</td>
</tr>
<tr>
<td>5-15-17-1</td>
<td>121.32</td>
<td>925</td>
<td>48.36</td>
<td>5.35</td>
</tr>
<tr>
<td>5-10-10-10-1</td>
<td>175.23</td>
<td>993</td>
<td>80.65</td>
<td>8.4</td>
</tr>
</tbody>
</table>
Generalization:

In most cases the multilayer network is trained with a finite number of examples of proper network behavior:

\[
\{p_1, t_1\}, \{p_2, t_2\}, \ldots, \{p_Q, t_Q\}
\]

This training set is normally representative of a much larger class of possible input/output pairs. It is important that the network successfully *generalize* what it has learned to the total population.

For a network to be able to generalize, it should have fewer parameters than there are data points in the training set. In neural networks, as in all modeling problems, we want to use the simplest network that can adequately represent the training set. An alternative to using a simplest network is to stop the training before the network overfits.

4.1.2 Training

The present section follows the training procedure described in the previous section. Thus, the configuration of the ANN and the number of training cycles are determined by

<table>
<thead>
<tr>
<th>Date</th>
<th>Test Set</th>
<th>Train Set</th>
<th>Test Error</th>
<th>Train Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-15-10-10-1</td>
<td>97.51</td>
<td>3895</td>
<td>69.75</td>
<td>6.54</td>
</tr>
<tr>
<td>5-17-10-10-1</td>
<td>195.21</td>
<td>365</td>
<td>84.61</td>
<td>9.31</td>
</tr>
<tr>
<td>5-17-14-10-1</td>
<td>37.10</td>
<td>1852</td>
<td>49.82</td>
<td>4.08</td>
</tr>
<tr>
<td>5-14-14-17-1</td>
<td>25.6</td>
<td>9801</td>
<td>45.01</td>
<td>3.51</td>
</tr>
<tr>
<td>5-17-10-14-1</td>
<td>32.93</td>
<td>11751</td>
<td>49.31</td>
<td>3.96</td>
</tr>
<tr>
<td>5-17-14-14-1</td>
<td>15.30</td>
<td>2499</td>
<td>43.43</td>
<td>2.82</td>
</tr>
</tbody>
</table>

Table 4-1: Numerical Comparison of Results Obtained for Different Network Architectures
a trial and error process (Diaz et al, 1999) in which either may be changed if the performance of the network during training is not good enough.

4.1.3 Network performance

The performance is evaluated by calculating the mean square error (MSE) of the output errors

\[
\hat{F}(x) = (t(k) - a(k))^T (t(k) - a(k)) = e^T(k)e(k)
\]

\[
= \frac{1}{M} \sum_{i=1}^{M} (e_i)^2 = \frac{1}{M} \sum_{i=1}^{M} (t_i - a_i)^2
turns...... (4.1)
\]

at each stage of the training and the percentage errors between the output and target values. Here \(i = 1,2,\ldots,M\), where \(t_i\)'s are the given training data and \(a_i\)'s are the predictions, and \(M\) is the total number of training data sets. After some trials, the best result were obtained by the 5-17-14-14-1 configuration with a number of 100,000 epochs (training cycle).
4.1.4 Separation of data for training and testing

From the total of \(M = 942 \) runs that were developed in ANSYS, \(M_1 = 394 \) runs
corresponded to 5 fins, \(M_2 = 201 \) runs corresponded to 4 fins, \(M_3 = 194 \) runs corresponded to 3 fins and \(M_4 = 153 \) runs corresponded to 2 fins.

The capability of the ANN to model complex phenomena can be illustrated by taking the total \(M = 942 \) ANSYS runs and training a fully connected 5-17-14-14-1, shown in Figure 4-5. The \(N = 5 \) input neurons correspond to the positional of the fins variables: \(y \); the output neuron corresponds to the maximum temperature \(T_{\text{max}} \). The resulting function:

\[
T_{\text{max}}^p = T_{\text{max}} (y_1, y_2, y_3, y_4, y_5; w) \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (4.2)
\]

For testing the trained ANN, the physical variables \(y_i \)'s are input and the corresponding \(T_{\text{max}}^p \) are predicted.

4.2 Artificial neural network results

The ANN results are shown in Table 4-2 for the 5-17-14-14-1 configuration and for all the combined fin positions and numbers. Table 4-3 shows the results obtained for different fin positions with different architectures.

<table>
<thead>
<tr>
<th>Network Configuration</th>
<th>MSE</th>
<th>Maximum Error ((^\circ C))</th>
<th>Standard deviation ((^\circ C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-17-14-14-1</td>
<td>15</td>
<td>43</td>
<td>2.82</td>
</tr>
</tbody>
</table>

Table 4-2: Network result for all fins combined
<table>
<thead>
<tr>
<th>No. of Fins</th>
<th>Network Configuration</th>
<th>MSE</th>
<th>Maximum Error (°C)</th>
<th>Standard deviation (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5-17-14-1-14-1</td>
<td>1.54</td>
<td>33.93</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>5-17-14-1</td>
<td>3.49</td>
<td>188.81</td>
<td>9.03</td>
</tr>
<tr>
<td></td>
<td>5-17-1</td>
<td>8.72</td>
<td>43.11</td>
<td>2.35</td>
</tr>
<tr>
<td>4</td>
<td>5-17-14-1-14-1</td>
<td>2.31</td>
<td>19.65</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>5-17-14-1</td>
<td>1.03</td>
<td>12.65</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>5-17-1</td>
<td>8.68</td>
<td>23.12</td>
<td>3.29</td>
</tr>
<tr>
<td>3</td>
<td>5-17-14-1-14-1</td>
<td>1.88</td>
<td>34.29</td>
<td>4.43</td>
</tr>
<tr>
<td></td>
<td>5-17-14-1</td>
<td>1.55</td>
<td>48.50</td>
<td>5.04</td>
</tr>
<tr>
<td></td>
<td>5-17-1</td>
<td>11.44</td>
<td>28.76</td>
<td>3.59</td>
</tr>
<tr>
<td>2</td>
<td>5-17-14-1-14-1</td>
<td>0.01</td>
<td>68.85</td>
<td>7.96</td>
</tr>
<tr>
<td></td>
<td>5-17-14-1</td>
<td>1.54</td>
<td>77.84</td>
<td>8.58</td>
</tr>
<tr>
<td></td>
<td>5-17-1</td>
<td>21.47</td>
<td>42.18</td>
<td>5.98</td>
</tr>
</tbody>
</table>

Table 4-3: Network results for different no of fins with different architectures

To determine whether the network based on training data separated by some physical condition would perform better than another trained with the combined data set, the entire sets of runs M was combined to train a single ANN. The error, shown in Table 4-2 under “combined”, is larger than the ANN predictions for individual cases, indicating that this ANN has more difficulty in differentiating between the different physics involved. However, even then the predictions of the total heat rate have errors less than 10%.
Figure 4-6: Neural Network Prediction error for all-combined fins

Figure 4-7: Neural Network Prediction error for 5 fins
Figure 4-8: Neural Network Prediction error for 4 fins

Figure 4-9: Neural Network Prediction error for 3 fins
Figure 4-10: Neural Network Prediction error for 2 fins

In all the figures, the straight lines indicate quality between prediction and experiment. The accuracy and precision given by the ANN is notable. There are some data points in Figures 22-26 that are the outliers and can clearly be eliminated to improve the predictions, if desired.

4.3 Error sources in ANN estimation

In order to use neural networks as a dependable tool for thermal design, one must consider the factors that influence its predictions and performance. As mentioned by several authors (Kramer and Leonard, 1990; Chryssolouris et al., 1996; Shao et al., 1997; Chinnam and Ding, 1998; Niyogi and Girosi, 1999), the performance of neural networks
is influenced by noise corruption, spatial distribution and size of the data used to construct the neural network model, and the characteristics of the artificial neural network, *i.e.* number of layers, number of hidden neurons, its architecture, *etc.* The neural network is comprised of a finite number of hidden layers and neurons per layer to approximate an unknown function, and this fact also introduces an error. The scale of this error depends on the figurative capability of the artificial neural network which may increase due to over fitting as the size of the network becomes large. Another source of error branches from the fact that only finite data are available for training. As the number of training data sets increases, the error decreases. Niyogi and Girosi (1999) demonstrated that it is not possible to reduce the upper bounds on errors due to the network size and the limited training data simultaneously. Thus if we want to rely on the ability of the neural network to generalize the connection between the input and output quantities that govern the heat transfer phenomena inside the pressure vessel for motor-gear box arrangement, we will have to be very careful in providing an adequate training set. On the other hand, as a consequence of being applied to regions beyond the range of available training data, neural networks are very likely to have a poor performance on their predictions. In fact, for a fixed neural network architecture, we may have two limits depending on the availability of the training data sets and the number of inputs to the neural network. In such a case, when the number of measurements is very large, if the network is used outside the convex hull of the training data (Courrieu, 1994), then the error in the performance of the neural network will be large because there are no data in the region to support the predictions. Inside the domain given by the convex hull, the empty spaces where measurements are absent are small in size and there is little
degradation of the network predictions. The second limit appears when there are very few training experiments, as in the case of the present study. The voids inside the convex hull of the data are large enough so that they contribute to the inaccuracy of predictions made by the neural network in these regions.

4.4 Summary

In the present study we have applied the ANN approach to accurately model the thermal characteristics of a pressure vessel generating heat inside due to an electric motor. Because of the inherent attributes of the ANN technique, which traditional analysis including standard correlations do not have, ANNs can correlate given experimental data with errors of the same order as the uncertainty of the measurements. Even when discrete variables are involved, its ability to recognize patterns allows the neural network to capture all the complex physics without need to assume mathematical models of the process. These features, in principle, make the ANN approach suitable for use in the estimation of heat rates under different conditions.

Correlations and neural networks, being empirical models of complex systems, are constructed based on experimental information. Their effectiveness in estimating the heat rates under operating conditions different from those used in their development, depend on the number and distribution of these measurements. Models constructed from large, dense and well distributed measurements will tend to have smaller errors, while those built from undersized data will perform poorly. Limited data arise from the fact that in industrial applications, such as underwater turbine, it is not economically possible to perform a large number of experiments.
We have presented a methodology for the estimation of errors from an ANN trained with a finite number of data sets. A low value of the estimated error is an indication that there are sufficient training data to support the ANN prediction; while a large error will indicate absence of enough points to aid in the ANN predictions and more training data would be needed in order to improve these.

In the present case, no experiments were performed and no experimental data were available. So, experimental validation of this design procedure is omitted. A low value of the estimated error would be an indication that there are sufficient experimental data to support the ANN prediction; while a large error will indicate absence of enough points to aid in the ANN predictions and more experiments would be needed in order to improve these. The procedure proposed here can help the design engineers and the manufacturers to plan new measurements by showing where these are needed.
CHAPTER 5
THE DESIGN OPTIMIZATION WITH GENETIC ALGORITHM

5.1 Introduction

The design systems work by searching through the large number of possible solutions to discover the best specific solution. The search process is often time consuming and expensive. But by exploiting the natural processes that biological systems use to evolve and adapt, design engineers can often quickly solve otherwise difficult design problems that resist solution by traditional optimization methods. This chapter explains the basic technique of the genetic algorithm and shows how we can use the genetic algorithm to solve our particular design optimization problem.

For such problems genetic algorithms may perform better than traditional approach because they better retain the feasible points found in their populations and may have higher selection pressure which is desirable when evaluations are very expensive.

This chapter focuses on explaining how genetic algorithms work. Also the thermal design optimization problem, in other words to find the best possible solutions for the fin locations, the genetic algorithm is applied and this chapter explains the design steps. Some more basic theoretical references are provided in the bibliography for those interested in a more rigorous explanation of the details of genetic algorithm.
5.2 Basic Optimization Terminology

Here some informal definitions for a few basic optimization terms are provided in order to ensure that everyone has a common understanding. These are not rigorous definitions, but should be adequate for the readers. Only basic terms are presented here to get the discussion going; other more specific terms relating to genetic algorithms are introduced as the remainder of this chapter.

Optimization refers to a goal directed search for the “best” solution to a problem. The idea of what is best must be defined by the problem statement. Minimizing the temperature by searching the lowest temperature is an example of an optimization problem. Optimization problems seek either the minimum or the maximum of some problem specific property or set of properties, but multiple goals or objectives are not uncommon.

The **objective function** is the design engineer’s numerical representation of the goal in the optimization problem. When the objective is to minimize, the term cost function is sometimes used. Genetic algorithms, however, use the term fitness function and that is the term used in this chapter.

Decision variables are the independent variables in the optimization problem that the design engineer manipulates while searching for the *optimum solution*. For example, the design considered here uses the locations and width of the fins as design variables.

A **constraint** refers to a restriction the design engineer places on either the design problem’s decision variables or resulting solutions. The design engineer could restrict stress or deflections, for example.
A **feasible solution** is any solution that does not violate any of the constraints the design engineer has placed on the problem being optimized. The feasible region consists of all the feasible solutions taken as a whole. The more restrictive the constraints placed on the problem by the design statement, the smaller the feasible region. Highly constrained problems may result in an empty feasible region, which obviously has no feasible solutions.

The **search space** encompasses the region that will be searched during the optimization process. The search space includes all possible values that the decision variables can assume. But since most problems have constraints on problem solutions, the search space will include some solutions that are not feasible. The optimization search process will throw out the solutions that are outside the feasible region.

5.3 Types of Optimization Problem

Optimization problem types may be categorized according to many different strategies. The problems might be arranged in a continuum from numerically well behaved to completely random.

- **Well behaved fitness function**: The fitness function of a numerically well behaved problem is continuous and differentiable everywhere within the search space. This fitness function can be also **mono-modal** having a single minimum or maximum point that represents the optimum solution. Such a problem is easy to solve with any of the classical methods of optimization that are referred to as hill-climbing methods. When the fitness function is **multi-modal** the hill-climbing method will get stuck at the top of the first hill encountered. To solve that problem the solution process can
typically start from several different locations. The best solution obtained in that
series of trails is then presumed to be the global optimum for the solution space.

- **Random fitness function**: At the other extreme of the problem continuum is the
 objective function that appears to be completely random. This appearance of
 randomness may be caused by incomplete knowledge of the parameters that control
 the fitness function or the problem could truly be random. In either case the fitness
 function appears to have no consistent relationship with the decision variables. The
 random problem is solved by a complete exploration of the solution space. The
 method is referred to as complete enumeration. The complete enumeration method,
 while effective, is seldom practical.

Between these two extremes of the well behaved and the random fitness function lies the
real world problem. The real optimization problem may be discontinuous at several
points and is often discontinuous at the global optimum because of a constraint. The real
optimization problem may not be differentiable, may have many relative optimums, and
may be tightly constrained by numerous boundary conditions. But the solution is not
random; searching in the correct direction generally leads to improvements in the fitness
function. This is the type of problem that a genetic algorithm can approach and often
solve.

5.4 How Genetic Algorithms Work

The genetic algorithm is modeled roughly on how natural biological systems evolve and
adapt through the process of natural selection. Many analogs with biological systems are
used to explain the operation of the genetic algorithm. The genetic algorithm approach
differs from that of the more traditional hill-climbing and complete enumeration methods in four basic ways.

First, the classic genetic algorithm encodes the values of the decision variables in a string called a *chromosome*. The encoding and the interpretation of the string are devised by the design engineer, but the computer interprets the string as simply a string of binary digits. Each bit can be thought of as a *gene* in the chromosome.

Second, the genetic algorithm uses a population of individuals to perform the search. Each individual represents one possible solution to the problem. The individual’s chromosome encodes one set of decision variables and so results in a single point in the solution space.

Third, evaluation of search progress is based on fitness alone, which keeps the search focused on the actual objective the design engineer is seeking. Derivatives are not used so the expense of derivative calculation is not incurred. Since derivatives are not used the method is not affected by discontinuous functions.

Fourth, the genetic algorithm is not a random search method, but it does use random processes to transition from one search state to another. The random processes give genetic algorithms a good balance between wide exploration of the search space and exploitation of fitness landscape features. Recall that enumeration techniques are very good at exploration, but do not exploit local features. Hill-climbing methods, however, are very good at exploitation, but do not explore the entire search space.

The genetic algorithm uses the selection, recombination, and mutation operations on the population of individuals to perform the search. The population is randomly created at the start of the search. Fitness is used to select individuals from the current generation to
advance into the next generation. These individuals are recombined and possibly mutated to form the next generation. This process is continued until there is no change in the best individual in the population.

Selection begins by determining the relative fitness of each individual by calculating the individual’s fitness divided by the total fitness of the entire population. Then a cumulative fitness is calculated for each individual as the sum of the relative fitness for all members up to the one being calculated. The cumulative fitness is thereby normalized over the entire population to a maximum of 1.0 for the last individual.

The population can be thought of as forming a roulette wheel with slots proportional to that individual’s fitness relative to the rest of the population. A random number between 0 and 1.0 is generated next and the individual with the cumulative fitness that bounds the random value is selected. This selection process continues until a new population is formed. In general, those individuals with higher fitness values are more likely to be selected, but there is an element of random choice also. Similarly, multiple individuals that have the same chromosome and hence the same fitness will also have a better chance of being selected.

Once the new population of individuals is selected recombination begins. The genetic algorithm moves through the population by pairs and randomly determines if each individual pair will be recombined. If that is the case, a random point along the pair of chromosomes is selected and the remainder of each chromosome to the right of the selection point is swapped between the two chromosomes. Two new individuals are formed, which are a recombination of the genes in the original two chromosomes.

Finally, each gene of each chromosome of each individual may be randomly mutated in
order to introduce additional diversity in the population. The probability of a mutation is generally low, but the design engineer can control this and all other probabilities to fine tune the search process.

Since most real world problems have constraints, the genetic algorithm needs a mechanism for applying problem constraints. A penalty function is an easy way to constrain the behavior of the fitness function to the feasible region by applying a penalty for violating a problem constraint. A penalty function reduces the value of the fitness function when a constraint is violated. A good penalty function drops the value of the fitness sharply at the constraint boundary forming a cliff in the fitness landscape. Recall that discontinuities do not bother the genetic algorithm so the sharper the edge of the cliff the better.

Good results can be obtained by reducing the unconstrained fitness value with a penalty that increases exponentially as the constraint violation increases. The violation squared can be subtracted from the value of the fitness function or the fitness can be multiplied by:

\[
e^{-|\text{violation}|}.
\]

Since the genetic algorithm uses random process to transition from one generation to the next, the genetic algorithm is not deterministic. That is to say it is unlikely the same answer will be obtained in any two attempts with the same problem. The answer will be the best that the genetic algorithm can find. The genetic algorithm does explore broadly, however, and exploits the fitness landscape to find a very good solution.
5.5 The Numerical Design Optimization Problem

In a very general form, the engineering numerical design optimization problem can be stated as follows: given a computer tool that can evaluate a design, the goal is to use this tool to come up with the best design according to some measure of merit and subject to some constraints, on condition that this is done within the time limits. The tool is usually a simulator or a piece of analysis code. The measure of merit may be a function of manufacturing cost, quality, stability or any combination of these and/or similar properties. The “thing” to be designed may be a machine or a process. The constraints may be performance related or modeling related.

For example, the problem may be to design a pressure vessel inside which a heat source is active and the inside temperature is to remain always below a certain degree of Celsius. The design may consider using fins to keep the temperature below the threshold temperature. The goal may be to minimize the number of fins, minimize the total mass weight of the fins and to find the best locations for the fins. The constraints may include something like “the fins must be in the positions on the motor-gear box where it is feasible to install in,” or “the widths of the fins must be sufficient and strong enough to withstand under severe vibration condition,” or “the total mass weight of the fins must be limited to certain kilograms so that the pressure vessel is structurally stable”. The time limits for the design optimization may be a few hours (as in a quick feasibility study) or a few months (in the case of final product design).

In the most general form, the word “design” may be taken to mean any kind of decision making regarding the shape or composition of some artifact. More formally, it could mean structural design or parametric design or both. Structural design involves
making decisions about the overall shape of the system (for example, how many fins the thermal design for the pressure vessel should have). Most variables involved in structural design are discrete. Parametric design involves making more detailed decisions about numerical aspects of the design (for example, what the length and width of the fins should be). Most variables involved in parametric design are continuous.

Once we make these assumptions, the problem becomes a general constrained non-linear programming problem in which the objective function and (often) the constraints are the outcome of the program. In other words, the problem may be stated as:

\[
\begin{align*}
\text{minimize} & \quad f(\bar{x}) \\
\text{subject to} & \quad g_i(\bar{x}) \leq 0 \quad i = 1,...,l \\
& \quad h_j(\bar{x}) = 0 \quad j = 1,...,m \\
& \quad \bar{x}^{(L)} \leq \bar{x} \leq \bar{x}^{(U)} \quad j = 1,...,m
\end{align*}
\]

where

- \(\bar{x}\) is a vector of real numbers representing the parametric description of the object being designed. The vectors \(\bar{x}^{(L)}\) and \(\bar{x}^{(U)}\) represent the lower and upper bounds of the design parameters respectively.

- \(f(\bar{x})\) is the objective function. It represents a numerical property of the object being designed, which needs to be minimized (such as temperature).

- \(g_i(\bar{x})\) and \(h_j(\bar{x})\) are the inequality constraints and the equality constraints respectively. These constraints are a means of quality control. Some of these constraints ensure that the design is physically realizable, others ensure adequate

1 In practice, equality constraints are usually converted to inequalities by introducing a numerical threshold. For example, \(h_j(\bar{x}) = 0\) may be replaced by \(|h_j(\bar{x})| \leq \varepsilon\) where \(\varepsilon\) is a small constant.

- performance and the rest ensure that the design is within the limits of the model being used.

Constraints are usually handled in one of two ways:

- **Direct methods** use the gradients (usually their numerical approximations) of the constraints to compute a direction that satisfies all constraints. Once a feasible point is found (i.e. one that satisfies all the constraints), direct methods usually use the gradient of the objective function and the active constraints to compute a direction that improves the objective function while not violating any constraints.

- **Penalty methods** do not work directly on the constraints but instead they add a penalty term to the objective function to account for constraint violations if any and then unconstrained optimization is performed using the augmented objective function. The penalty term is usually the product of a (large) positive penalty coefficient times the sum of the constraint violations.

The problem of proving that a point is a local optimum of a general nonlinear programming problem is undecidable (Schwabacher 1996). Therefore there is no analytical solution to the above problem. On the otherhand there is a large amount of literature on how to solve the nonlinear programming problem in practice. Most such techniques do not take into consideration the special properties of engineering design optimization spaces.

5.6 Thermal Design Optimization with genetic algorithm

Though GAs are relatively new technique in relation to its application to thermal engineering, there are a number of different applications that have already been
successful. The GA application in thermal engineering has been discussed in the Section 1.2.2.

5.6.1 Genetic Algorithm (GA) Architecture

This section provides a detailed description of the genetic algorithm specifically designed and tailored to be used for thermal design optimization for the problem stated in Chapter 1. The GA is designed from the existing techniques from the literature.

5.6.1.1 Overview of the Genetic Algorithm

The genetic algorithm is detailed described and mentioned in the references (Goldberg, 1989). In the remainder of this section we describe the main components of a genetic algorithm that has been used for our design process in the context of numerical optimization.

5.6.1.1.1 Representation (genotype)

In order to use genetic algorithms it is necessary to map the solutions of the problem to fixed length strings of some alphabet. The resulting strings are called the representation (genotype in GA terminology). The most common representations are binary and floating point.

Each individual of this tailored GA population represents a parametric description of the artifact, such as the locations and widths of fins. All parameters have continuous intervals. Here we used floating point representation (genotype). The fitness of each individual is based on the sum of a proper measure of merit computed by a simulator or some analysis code (such as the weight of fins), and a penalty function if relevant (such
as to impose limits on the permissible size of a fin). The penalty function is the product of an adaptive penalty coefficient and the sum of the constraint violations if any.

5.6.1.1.2 Initialization

In order to start the genetic algorithm evolution process, an initial population of solution vectors must be generated. The most common method of initialization is GAs is random initialization in which the initial population consists of random vectors uniformly distributed in the search space hypercube.

Here the initial population is generated randomly in between 0 and 1.37m, since we want to put the fins on the top of the motor surface.

5.6.1.1.3 The Selections Strategy

The selection strategy decides how to select individuals to be parents for newborns. Usually the selection applies some selection pressure by favoring the individuals with better fitness. The most common selection methods are:

- **Fitness proportional (roulette wheel) selection**: each individual’s probability of being selected is proportional to its fitness value.

- **Rank-based selection**: each individual’s probability of being selected depends on its fitness rank in the population rather than the actual fitness value. The most common rank-based selection methods are:
 - Tournament selection
 - Weight series selection

94
We use fitness proportional selection methods. Each individual \(x \) is selected and copied in the mating pool with the probability proportional to fitness, \(p_s = \frac{f(x)}{\sum f(x)} \). This is implemented using a roulette wheel method.

5.6.1.1.4 Genetic Operation

Crossover Operation

Single-point crossover is assumed. In this operation two parent individuals are selected from the mating pool.

The point crossover operator aligns the genotypes of the parents. A crossover position is then randomly selected with uniform probability and the part of the first parent’s genotype before the crossover position is copied to the corresponding part of the newborn. The rest of the newborn comes from its corresponding place in the second parent’s genotype.

Crossover operation is executed with the probability \(p_c \).
Mutation Operation

Mutation introduces new genetic material to the genetic algorithm in order to maintain diversity and explore new regions. Some conservative mutation operators also help in exploiting the good regions of the space. Some of the common mutation operators are:

- **Uniform mutation**
- **Non-uniform mutation**

Here mutation operator is applied *gene-wise* (uniform mutation), that is, each gene undergoes mutation with the probability p_m. When the mutation operation occurs to a gene, its gene value is flipped.
5.6.1.1.5 Replacement strategy

The replacement strategy is unique to steady state genetic algorithms. It decides how to make room for the newborn when the population is full. Some of the most common replacement strategies are:

- **Elitist replacement**: selects for replacement a random individual, on condition that the best *elite fraction* of the population is not replaced. The elitist fraction may be constant or dynamic.

- **Crowding replacement**: takes into consideration others factor in addition to fitness (such as preserving diversity in the population for example). The reader is referred to [Mahfoud 1995] for a detailed description of this method.

5.6.1.1.6. Stopping criteria

The genetic algorithm stops when either the maximum number of evaluations has been exhausted or the population losses diversity and practically converges to a single point in the search space.

5.7 Thermal Design Application domain: Motor-gear box arrangement domain inside pressure vessel of an ocean turbine

5.7.1 Domain description

Our domain concerns the already built motor-gearbox arrangement which is installed
inside a pressure vessel of an ocean turbine. Figure 5-2 shows the simplified schematic of the arrangement which is created in ANSYS for the finite element analysis of heat transfer.

Let's say the position of five fins are y_1, y_2, y_3, y_4, and y_5.

The fitness function for the genetic algorithm is designed as:

$$
\min J = w_0 T_{\text{max}} + w_1 f(y_1) + w_2 f(y_2) + w_3 f(y_3) + w_4 f(y_4) + w_5 f(y_5) + w_b \ldots \ (5.2)
$$

where

$$
w = \text{weights assigned}
$$

$$
f(y) = \text{function of the positions of fins}
$$

The weights will be assigned depending on the positions of the fins. The design domain is divided depending on the most and least favorable positions of the fins.

Figure 5-2: Simplified schematic arrangement of the ocean turbine
5.7.2 Dividing the domain

Figure 5-3 shows the division of the domain of interest, that is, the motor-gear box surface.

Most favorable positions:

\[
\begin{align*}
L2 & \leq y_i^{m1} \leq L1 \\
L4 & \leq y_i^{m2} \leq L3 \\
L8 & \leq y_i^{m3} \leq L7 \\
L11 & \leq y_i^{m4} \leq L10
\end{align*}
\]
\[L6 \leq y_i^{m_i} \leq L5 \]

Least favorable positions:

\[L9 \leq y_i^{l_i} \leq L8 \]
\[L3 \leq y_i^{l_i} \leq L2 \]
\[L10 \leq y_i^{l_i} \leq L9 \]
\[L5 \leq y_i^{l_i} \leq L4 \]
\[L7 \leq y_i^{l_i} \leq L6 \]

For the design algorithm the total domain is divided into two domains: Most favorable (MF) domain and least favorable (LF) domain. Here, \(y_i^{m_i} \) 's are the positions of fins in the domain of most favorable, \(y_i^{l_i} \) 's are the positions of fins in the domain of least favorable; \(k = 1 \) is the best position in the MF domain and \(k = 5 \) is the last choice in the MF domain. The same is true for the LF domain. In LF domain, as the value of \(j \) increases, the place becomes less favorable.

The following diagram shows how we have assigned the value of \(f \) depending on the locations of the fins. We force the genetic algorithm to choose the location of the fins which have been assigned the lowest value of \(f_i \) and since this is a minimization problem the genetic algorithm will give the feasible solution corresponding to the least value of \(f \).
Figure 5-4: The geometric division of the design domain
5.8 Genetic Algorithm Flowchart

![Flowchart for the genetic algorithm](image)

Figure 5-5: Flow chart for the genetic algorithm
5.9 Optimum Results Obtained with Genetic Algorithm:

One of the advantages of GA is that it provides a list of optimum variables, not a single solution. Also the optimum solution is independent of initial population generation. We have generated the pool of individuals (the initial population) in two different ways, first restricting the random population in the range of 0 to 1.37 m and secondly, generating random numbers without any restrictions, or initial range.

Population 1: \(\text{pop} = 0.0001 + (1.37 - 0.0001 \times \text{rand (Npop, Nvar)}) \)

Population 2: \(\text{pop} = \text{rand (Npop, Nvar)} \)

A population of 500 individuals was used. The probability of recombination was 0.8 and the probability of mutation was 0.03. It should be remembered that the GA uses a random number generator, so the exact result won’t be reproducible.

Table 5-1 shows the optimum results obtained from GA and comparison with ANSYS:
Comparison between Genetic Algorithm and ANN:

Table 5-1: Comparison of GA results with ANSYS results

Table 5-1 shows despite of the method of initial population generation, the GA gives almost the same optimum temperatures. The entire above solutions lie in the feasible region satisfying all of the imposed constraints and also the results agree with the corresponding ANSYS results. These solutions give the pareto-optimal set. These are the
set of design variables given by the GA, since in GA the initial population is generated randomly; the final results vary each time GA is run. So, if one of these five locations is chosen for the fin installments, it is guaranteed that the temperature inside the pressure vessel will be below the specified minimum temperature.

5.10 Chapter Summary

This chapter describes a design algorithm for finding the optimum number and locations for fins. We have discussed the modeling and architectural aspects of our design optimization. The advantage of this method is that it does not need a rigorous mathematical objective function for its function evaluation. The genetic algorithm uses the neural network approximation, described in previous chapters, as it’s objective function. However, the design algorithm and the genetic algorithm used here have been made as simple as it could be. We have put only the locations and numbers of fins as the design parameters. To make the design algorithm better and getting more versatile results the following can be considered as design parameters:

- a) Width of the fins
- b) Cross-sectional areas of the fins
- c) Mass weight
- d) Material of the fins, and
- e) Conductivity

Also, the constraints put here have been made as simple as it could be. For the betterment of the optimum results the constraints cut be put in trial and error basis depending on the geometry and decision parameters.
Overall, the design algorithm in its simplest form worked good and proved that it can provide with optimum design solutions using the NN as its fitness function. The design algorithm is carried out in MATLAB environment.

GAs are powerful optimization tools, appropriate for many applications. Some of the challenges faced in the application of genetic algorithms to engineering design domains are:

- The search space can be very complex with many constraints and the feasible (physically realizable) region in the search space can be very small.
- Determining the fitness of each point may involve the use of a simulator or an analysis code which takes a non-negligible amount of time. This simulation time can range from a fraction of a second to several days in some cases. Therefore, it is impossible to be inconsiderate with the number of objective evaluations in an optimization.

For such problems genetic algorithm may perform better than conventional optimization technique.

The genetic algorithm has some powerful advantages over both the classical hill-climbing method and the complete enumeration method. First the genetic algorithm provides a good balance of both exploitation and exploration of the search space. That means solutions are efficient yet full exploration of the entire space is provided so the solver is less likely to hang up on a local relative optimum.

Second, the genetic algorithm has no problem of a discontinuity – one of the characteristics of many real world problems. The design engineer does not need to create elaborate mathematical fictions, however, to fool the solver into thinking the actual
problem is well behaved.

Finally, the genetic algorithm seeks the very good solution, rather than the very best solution. This is actually a strength that prevents the genetic algorithm from myopically falling into holes in the mathematics or getting stuck on top of a local hot spot.
CHAPTER 6
GENERAL CONCLUSION

6.1 Summary of Benefits and Limitations for the Present Methodologies

Benefits:

If we have trained neural network and results from genetic algorithm, that is the optimum number and locations of the fins, we can check the genetic algorithm result instantaneously using the trained neural network. If we want to check the genetic algorithm result with ANSYS simulation, the simulation run time is a lot higher. Therefore it is seen that using artificial neural network, computational time lowers down to zero.

The benefits of using the present methodology are tabulated below:

1) Fast Computation:

<table>
<thead>
<tr>
<th>Computational Time (for five fins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSYS</td>
</tr>
<tr>
<td>56 minutes (transient analysis)</td>
</tr>
</tbody>
</table>

2) Simplicity:

After having the optimum results from GA, the results are checked by only calling the
trained neural network. The trained neural network only needs the inputs, and gives the maximum temperature as the network output. This is a very simple operation.

On the other hand, compared to ANSYS, running the ANSYS simulation is always a complex procedure. In ANSYS, checking the genetic algorithm result with five fins requires the following steps:

i) Modeling the fins in exact locations, defining five different areas.
ii) Defining material properties
iii) Meshing
iv) Apply Loadings and boundary conditions, and
v) Finally, solving in ANSYS

We can see that the ANSYS procedure is much more complex compared to simple ANN implementation.

Limitations and Disadvantages:

1) Limited training data. For training the neural network, the network needs always very large number of training pairs for better network performance. But in reality getting large number of training sets are not possible due to physical limitations. Also with a huge amount of training data, it takes a significant amount of time for training the network. So, there is always a trade off between large training data and better network performance.

Despite of very fast computation time, there are always errors involved in artificial neural network performance, no matter how small the error is.
6.2 Conclusions

The present thesis has dealt with the accuracy of predictions of thermal performance of an ocean turbine. The aim of the work presented in this thesis was to examine the possibility of defining an optimal design algorithm for the thermal system of an ocean turbine. To this end three types of techniques have been used. The first technique uses the method of finite elements of heat transfer that are used to find the approximate heat transfer solution of the considered design domain inside a pressure vessel. The second is an adaptive function which belongs to the soft computing methodology: the artificial neural network. And finally, the third encompasses optimization methods based on biological evolution that are used to find the parameters of a given functional form.

The motor-gear box arrangement inside the pressure vessel of an ocean turbine is a complex system for which the accurate determination of their performance is essential. Due to the fact that the geometry of the arrangements and the boundary conditions are complex, analytical solutions are not available for the heat transfer calculation; a common practice is to use the finite element approximations for the heat transfer calculations. The heat loss from the motor has been taken as the thermal flux boundary conditions per square meter of the motor surface. A complete analysis has shown that there are some percentages of error in the calculation of the transfer of heat. The current work has also found that the reason for the lack of accuracy is because of the restrictive simplifying assumptions have been made with respect to geometry, material properties and boundary conditions.

In the current thesis the use of artificial neural network can be thought of as an approach for acquiring knowledge about the heat transfer in design domain and use it to guide for
further explorations. We can afford to use these relatively expensive methods because the objective functions are even more expensive. By acquiring the knowledge of heat transfer by using neural network we can solve the problem more efficiently by optimizing each subset separately. Artificial neural networks do not have the deficiencies of correlations; moreover they do not need explicit mathematical representations nor detailed information of the process. Results from the application of neural networks to the thermal design have demonstrated that, because of its inherent attributes that allow them to recognize and simulate nonlinear phenomena in complex processes, artificial neural networks can correlate given data with errors of the same order as the uncertainty of measurements. In all the cases investigated here, the estimation errors from the neural network approach are restricted to less than 5%. Even with limited data involving discrete variables, such as those included in motor-gear box geometry, the neural network approach is suitable to simulate the behavior of the system.

In this project, an optimization methodology based on biological evolution that enables a better accuracy by finding the optimum values of the design parameters is introduced. A general purpose genetic algorithm is used for the optimization problem. Genetic algorithms have been extensively used as a means of performing global optimization in a simple yet reliable manner. However, in some cases of design optimization domains a general purpose genetic algorithm is often unable to give the global optimum solution; this may be due to the assumptions made during the different stage of the procedures. Moreover, the constraints and the nonlinear objective functions for the genetic algorithms can be manipulated to improve the quality of the resulting design.

The focus of this research work has been to develop methodologies that allow accurate
estimation of heat transfer of a given geometric domain and also that allow giving optimum design parameters for the thermal solution. Although these methodologies have been directed for the study of thermal design of an ocean turbine, concentrating particularly on the motor-gear box arrangement, they can well be applied to other types of thermal systems and engineering design problems.

6.3 Limitations and future work

6.3.1 Limitations

- **No experimental validation:** the methodologies presented here are not validated experimentally. The reasons for not doing the experimental validation can be listed as below:

 1) The actual turbine was not installed under water,

 2) The prototype was not ready until the time this thesis is finished.

- **Limited design variables:** for the simplification of the design process we have only considered the locations of the fins. But we left room for other design variables, for example, fin width, mass weight, fin cross sectional areas, materials used etc.

- **Constraints:** there are some rooms to improve the optimization algorithm by manipulating the constraints put on the objective function of the genetic algorithm. The parameters might have been put in a more intelligent way to improve the search results.
6.3.2 Future works

There are some subject matters and areas that have not been considered in the present thesis. These are complementary to the analysis of heat transfer, and the applications of the design methodologies used in the current work in order to improve their capabilities. Therefore, some recommendations for further works in these areas are provided next.

- Experimental validation – The design methodologies presented here have to be experimentally validated. The experimental validation can be carried out using the prototype in the laboratory conditions. After having satisfactory results from the laboratory experiments, the real time experiments on the actual turbine, assuming that the turbine is installed under water, can be carried out.

- A sanity check can also be performed, that is a basic test to quickly evaluate the validity of the claim.

- Geometric optimization – the current thesis has used the optimization techniques to find the positions of fins to keep the temperature down the specified values inside the design domain of a pressure vessel; the design methodology has considered the geometry already built. So, the step ahead is the geometric optimization of the pressure vessel and motor gear box arrangement. The optimum solution of this design problem can be sought by means of genetic algorithms to search for the air gap space in between the motor surface and the inside pressure surface, fin spacing and diameter, etc, to maximize the heat transfer rate from the system and minimizing the temperature inside the pressure vessel.

- Sensitivity analysis - Sensitivity analysis may also be included in
the modeling by artificial neural networks in order to improve even more their accuracy.

- **Continuation** - The analysis of some heat transfer phenomena, such as spatially inhomogeneous or unsteady problems, can also be followed with the artificial neural network approach if the information from the previous spatial or temporal locations is imported to the network such that the values at new points in space or time can be generated from it.

- **CFD calculations** - To look into the possibility of taking into consideration of the physics of several heat transfer phenomena, computational fluid dynamics (CFD) calculations may also be used to produce training data for the neural network technique.

- **Correlation approach** - After getting the experimental data relating heat transfer from the ocean turbine correlation approach can be applied to experimental data to correlate the information about the heat transfer coefficients. Many different correlating forms are commonly used in the heat transfer literature, but there are numerous other possibilities. So, the natural extension to the study of the correlation approach is to search for the function that best fits the heat exchanger experimental data without assuming knowledge based on hypothesis or theory rather than experimental (i.e. *a priori*) form of the correlation. The search algorithm chooses from a variety of possible forms of correlation functions within a restricted functional space, compares them and picks out the one, along with the corresponding constants, that provides the closest fit to the experiments. In principle, the above can be carried out by means of genetic programming.
(Koza, 1992), which is an extension of genetic algorithm. The simulated annealing algorithm may be also suitable in this regard.

- Clustering experimental data – cluster analysis of experimental data from different phenomenon, e.g., heat transfer with or without fin, can be applied to thermal design to classify the data before using a technique for modeling.

- More specific GA - General purpose genetic algorithm is used here. A more specific and subject oriented genetic algorithm may be developed depending on the design problem

- Improving the ANN architecture - In consider to the technique that fit in to soft computing, the artificial neural network is one of which several improvements can be attempted. The choice of the network architecture, i.e. number of layers and number of hidden neurons, is so far an un-solved issue in artificial neural networks. From a set of architectures both genetic algorithms and simulated annealing can search for the one that provides the best accuracy with the smallest architecture, i.e. number of layers and hidden neurons. Another concern that can be practiced is in regards to the learning algorithm. This may use Newton’s method instead of a steepest descent to find the optimum values of the weights and biases of a given network architecture. Furthermore, one difficulty that justifies consideration is the selection of the activation function in artificial neural networks. It would be appealing to investigate if a different function, instead of a common sigmoid, hyperbolic tangent, etc., may be used to perform the nonlinear transformations between inputs and outputs.
APPENDIX A
BACKPROPAGATION ALGORITHM

Backpropagation

In this section we present a generalization of the least mean square (LMS) algorithm. This generalization, called backpropagation, can be used to train multilayer networks. Backpropagation is an approximate steepest descent algorithm, in which the performance index is mean square error. The difference between the LMS algorithm and backpropagation is only in the way in which the derivatives are calculated. For a single-layer linear network the error is an explicit linear function of the network weights, and its derivatives with respect to the weights can be easily computed. In multilayer networks with nonlinear transfer functions, the relationship between the network weights and the error is more complex. In order to calculate the derivatives, we need to use the chain rule of calculus.

Theory and examples

The perceptron learning rule of Frank Rosenblatt and the LMS algorithm of Bernard Widrow and Marcian Hoff were designed to train single-layer perceptron-like networks. These single-layer networks suffer from the disadvantage that they are only able to solve
linearly separable classification problems. Both Rosenblatt and Windrow were aware of
these limitations and proposed multilayer networks that could overcome them, but they
were not able to generalize their algorithms to train these more powerful networks.

Apparently the description of an algorithm to train multilayer networks was contained in
the thesis of Paul Werbos in 1974 [Werbo74]. This thesis presented the algorithm in the
context of general networks, with neural networks as a special case, and was not
disseminated in the neural network community. It was not until the mid of 1980s that the
backpropagation algorithm was rediscovered and widely publicized. It was rediscovered
independently by David Rumelhart, Geoffrey Hinton and Ronald Williams [RuHi86],
David Parker [Park85], and Yann Le Cun [LeCu85]. The algorithm was popularized by
its inclusion in the book *Parallel Distributed Processing* [RuMc86], which described the
work of the Parallel Distributed Processing Group led by psychologists David Rumelhart
and James McClelland. The publication of this book spurred a torrent of research in
neural networks. The multilayer perceptron, trained by the backpropagation algorithm, is
currently the most widely used neural network.

Multilayer Perceptrons

We have introduced the notation for multilayer networks in Chapter 3, Figure 3-6. In
multilayer networks, output of the first network is the input to the second network, the
output of the second network is the input to the third network, and so on. Each layer may
have a different number of neurons, and even a different transfer function. We are using
superscripts to identify the layer number. Thus, the weight matrix for the first layer is
written as W^1 and the weight matrix for the second layer is written W^2.

To identify the structure of a multilayer network, we will use the following shorthand notation, where the number of inputs is followed by the number of neurons in each layer:

\[R - S^1 - S^2 - S^3 \] (A.1)

Let’s now investigate the capabilities of these multilayer perceptron networks using their application to function approximation.

Function Approximation

In control systems, for example, the objective is to find an appropriate feedback function that maps from measured outputs to control inputs. In adaptive filtering the objective is to find a function that maps from delayed values of an input signal to an approximate output signal. The following example will illustrate the flexibility of the multilayer perceptron for implementing functions.
Consider the two layer, 1-2-1 network shown in Figure A-1. For this example the transfer function for the first layer is log-sigmoid and the transfer function for the second layer is linear. In other words,

\[f^1(n) = \frac{1}{1 + e^{-n}} \quad \text{and} \quad f^2(n) = n \quad \ldots \quad (A.2) \]

Suppose that the nominal values of the weights and biases for this network are

\[w^1_{1,1} = 10, \quad w^1_{2,1} = 10, \quad b^1_1 = -10, \quad b^1_2 = 10 \]
\[w^2_{1,1} = 1, \quad w^2_{1,2} = 1, \quad b^2 = 0 \]

The network response for these parameters is shown in Figure A-2, which plots the network output \(a^2 \) as the input \(p \) is varied over the range \([-2, 2]\).
Figure A-2: Nominal Response of Network of Figure A-1.

Notice that the response consists of two steps, one for each of the log-sigmoid neurons in the first layer. By adjusting the network parameters we can change the shape and location of each step, as we will see in the following discussion.

The centers of the steps occur where the net input to a neuron in the first layer is zero:

\[n_1^l = w_{1,1}^l p + b_1^l = 0 \Rightarrow p = -\frac{b_1^l}{w_{1,1}^l} = -\frac{-10}{10} = 1 \text{ (A.3)} \]

\[n_2^l = w_{2,1}^l p + b_2^l = 0 \Rightarrow p = -\frac{b_2^l}{w_{2,1}^l} = -\frac{-10}{10} = -1 \text{ (A.4)} \]

The steepness of each step can be adjusted by changing the network weights.

From this example we can see how flexible the multilayer network is. It would appear that we could use such networks to approximate almost any function, if we had a sufficient number of neurons in the hidden layer. In fact, it has been shown that two-layer networks, with sigmoid transfer functions in the hidden layer and linear transfer functions in the output layer, can approximate virtually any function of interest to any degree of...
accuracy, provided sufficiently many hidden units are available.

The Backpropagation Algorithm

As we have talked earlier, for multilayer networks the output of one layer becomes the input to the following layer. The equations that describe this operation are

\[
a^{m+1} = f^{m+1}(W^{m+1}a^m + b^{m+1}) \quad \text{for} \ m = 0, 1, ..., M - 1 \quad \text{(A.5)}
\]

where \(M\) is the number of layers in the network. The neurons in the first layer receive external inputs:

\[
a^0 = p \quad \text{... (A.6)}
\]

which provides the starting point for Eq. (A.6). The outputs of the neurons in the last layer are considered the network outputs:

\[
a = a^M \quad \text{... (A.7)}
\]

Performance Index

The backpropagation algorithm for multilayer networks is a generalization of the LMS algorithm, and both algorithms use the same performance index: mean square error. The algorithm is provided with a set of examples of proper network behavior:

\[
\{p_1, t_1\}, \{p_2, t_2\}, \ldots, \{p_Q, t_Q\} \quad \text{............. (A.8)}
\]

where \(p_q\) is an input to the network, and \(t_q\) is the corresponding target output. As each input is applied to the network, the network output is compared to the target. The algorithm should adjust the network parameters in order to minimize the mean square error:
\[F(x) = E[e^2] = E[(t - a)^2] \quad \text{……………….. (A.9)} \]

where \(x \) is the vector of network weights and biases. If the network has multiple outputs this generalizes to:

\[F(x) = E[e^T e] = E[(t - a)^T (t - a)] \quad \text{…….. (A.10)} \]

We will approximate the mean square error by

\[\hat{F}(x) = (t(k) - a(k))^T (t(k) - a(k)) = e^T (k)e(k) \quad \text{……… (A.11)} \]

where the expectation of the squared error has been replaced by the squared error at iteration \(k \).

The steepest descent algorithm for the approximate mean square error is

\[w^m_{i,j}(k+1) = w^m_{i,j}(k) - \alpha \frac{\partial \hat{F}}{\partial w^m_{i,j}} \quad \text{………….. (A.12)} \]

\[b^m_i(k+1) = b^m_i(k) - \alpha \frac{\partial \hat{F}}{\partial b^m_i} \quad \text{………………. (A.13)} \]

where \(\alpha \) is the learning rate.

Now we come to the difficult part- the computation of the partial derivatives.

Chain Rule

For a single-layer linear network (the ADALINE) these partial derivatives are conveniently computed using Equations:

\[W(k+1) = W(k) + 2\alpha e(k)p^T (k) \quad \text{…………………….. (A.14a)} \]
and

\[b(k + 1) = b(k) + 2\alpha e(k) \] \hspace{1cm} (A.14b)

For the multilayer network the error is not an explicit function of the weights in the hidden layers, therefore these derivatives are not computed so easily.

Because the error is an indirect function of the weights in the hidden layers, we will use the chain rule of calculus to calculate the derivatives. To review the chain rule, suppose that we have a function \(f \) that is an explicit function only of the variable \(n \). We want to take the derivative of \(f \) with respect to a third variable \(w \). the chain rule is then:

\[
\frac{df(n(w))}{dw} = \frac{df(n)}{dn} \times \frac{dn(w)}{dw} \hspace{1cm} (A.15)
\]

For example, if

\[f(n) = e^n \text{ and } n = 2w, \text{ so that } f(n(w)) = e^{2w} \] \hspace{1cm} (A.16)

then

\[
\frac{df(n(w))}{dw} = \frac{df(n)}{dn} \times \frac{dn(w)}{dw} = (e^n)(2) \hspace{1cm} (A.17)
\]

We will use this concept to find the derivatives in Eq. (A.12) and Eq. (A.13):

\[
\frac{\partial \hat{F}}{\partial w_{i,j}^m} = \frac{\partial \hat{F}}{\partial n_i^m} \times \frac{\partial n_i^m}{\partial w_{i,j}^m} \hspace{1cm} (A.18)
\]

\[
\frac{\partial \hat{F}}{\partial b_i^m} = \frac{\partial \hat{F}}{\partial n_i^m} \times \frac{\partial n_i^m}{\partial b_i^m} \hspace{1cm} (A.19)
\]

The second term in each of these equations can be easily computed, since the net input to layer \(m \) is an explicit function of the weights and bias in the layer:
\[
 n_i^m = \sum_{j=1}^{n_{m-1}} w_{i,j}^m a_j^{m-1} + b_i^m \quad \text{(A.20)}
\]

Therefore

\[
\frac{\partial n_i^m}{\partial w_{i,j}^m} = a_j^{m-1}, \quad \frac{\partial n_i^m}{\partial b_i^m} = 1 \quad \text{(A.21)}
\]

If we now define

\[
 s_i^m = \frac{\partial \hat{F}}{\partial n_i^m} \quad \text{(A.22)}
\]

(\textit{the sensitivity of } \hat{F} \textit{ to changes in the } i \textit{th element of the net input at layer } m) \), then Eqs. (A.18) and (A.19) can be simplified to

\[
\frac{\partial \hat{F}}{\partial w_{i,j}^m} = s_i^m a_j^{m-1} \quad \text{(A.23)}
\]

\[
\frac{\partial \hat{F}}{\partial b_i^m} = s_i^m \quad \text{(A.24)}
\]

We can now express the approximate steepest descent algorithm as

\[
 w_{i,j}^m(k+1) = w_{i,j}^m(k) - \alpha s_i^m a_j^{m-1} \quad \text{(A.25)}
\]

\[
 b_i^m(k+1) = b_i^m(k) - \alpha s_i^m \quad \text{(A.26)}
\]

In matrix form this becomes

\[
 W^m(k+1) = W^m(k) - \alpha s^m (a^{m-1})^T \quad \text{(A.27)}
\]

\[
 b^m(k+1) = b^m(k) - \alpha s^m \quad \text{(A.28)}
\]

where
Backpropagating the Sensitivities

It now remains for us to compute the sensitivities s^m, which requires another application of the chain rule. It is this process that gives us the term \textit{backpropagation}, because it describes a recurrence relationship in which the sensitivity at layer m is computed from the sensitivity at layer $m+1$.

To derive the recurrence relationship for the sensitivities, we will use the following Jacobian matrix:

$$\frac{\partial \hat{F}}{\partial \hat{n}^m} = \begin{bmatrix} \frac{\partial \hat{F}}{\partial n_1^m} \\ \frac{\partial \hat{F}}{\partial n_2^m} \\ \vdots \\ \frac{\partial \hat{F}}{\partial n_s^m} \end{bmatrix}$$ (A.29)

$$s^m \equiv \frac{\partial \hat{F}}{\partial \hat{n}^m} = \begin{bmatrix} \frac{\partial \hat{F}}{\partial n_1^m} \\ \frac{\partial \hat{F}}{\partial n_2^m} \\ \vdots \\ \frac{\partial \hat{F}}{\partial n_s^m} \end{bmatrix}$$ (A.29)
Next we want to find an expression for this matrix. Consider the i, j element of the matrix:

\[
\frac{\partial n_{i}^{m+1}}{\partial n_{j}^{m}} = \frac{\partial}{\partial n_{j}^{m}} \left(\sum_{i=1}^{n} w_{i,j}^{m+1} a_{i}^{m} + b_{j}^{m+1} \right) = w_{i,j}^{m+1} \frac{\partial a_{i}^{m}}{\partial n_{j}^{m}} = w_{i,j}^{m+1} \frac{\partial f_{j}^{m}(n_{j}^{m})}{\partial n_{j}^{m}} = w_{i,j}^{m+1} f_{j}^{m}(n_{j}^{m})
\]

where

\[
f_{j}^{m}(n_{j}^{m}) = \frac{\partial f_{j}^{m}(n_{j}^{m})}{\partial n_{j}^{m}} \tag{A.32}
\]

Therefore, the Jacobian matrix can be written

\[
\frac{\partial n^{m+1}}{\partial n^{m}} = W^{m+1} F^{m}(n^{m}) \tag{A.33}
\]

where

\[
F^{m} n^{m} = \begin{bmatrix}
 f_{1}^{m}(n_{1}^{m}) & 0 & \ldots & 0 \\
 0 & f_{2}^{m}(n_{2}^{m}) & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & f_{s}^{m}(n_{s}^{m})
\end{bmatrix} \tag{A.34}
\]

We can write out the recurrence relation for the sensitivity by using the chain rule in matrix form:

\[
s^{m} \frac{\partial \hat{F}}{\partial n^{m}} = \left(\frac{\partial n^{m+1}}{\partial n^{m}} \right)^{T} \frac{\partial \hat{F}}{\partial n^{m+1}} = F^{m}(n^{m}) (W^{m+1})^{T} \frac{\partial \hat{F}}{\partial n^{m+1}} \tag{A.35}
\]

\[
= F^{m}(n^{m}) (W^{m+1})^{T} s^{m+1}
\]

Now we can see where the backpropagation algorithm derives its name, the sensitivity
are propagated backward through the network from the last layer to the first layer:

\[\mathbf{s}^M \rightarrow \mathbf{s}^{M-1} \rightarrow \ldots \rightarrow \mathbf{s}^2 \rightarrow \mathbf{s}^1 \] \hfill (A.36)

At this point it is worth emphasizing that the backpropagation algorithm uses the same approximate steepest descent technique that we used in the LMS algorithm. The only complication is that in order to compute the gradient we need to first backpropagate the sensitivities. The beauty of backpropagation is that we have a very efficient implementation of the chain rule.

We still have one more step to make in order to complete the backpropagation algorithm. We need the starting point, \(\mathbf{s}^M \), for the recurrence relation of Eq. (11.35). This is obtained at the first layer:

\[\mathbf{s}^1 = -2(t_i - a_i) \frac{\partial a_i}{\partial n_i^M} \] \hfill (A.37)

Now, since

\[\frac{\partial a_i}{\partial n_i^M} = \frac{\partial f^M(n_i^M)}{\partial n_i^M} = f^M(n_i^M) \] \hfill (A.38)

we can write

\[\mathbf{s}^M = -2(t_i - a_i) f^M(n_i^M) \] \hfill (A.39)

This can be expressed in matrix form as

\[\mathbf{s}^M = -2\mathbf{F}^M(\mathbf{n}^M)(\mathbf{t} - \mathbf{a}) \] \hfill (A.40)

Summary

Let’s summarize the backpropagation algorithm. The first step is to propagate the input
forward through the network:

\[a^0 = p \] \hspace{1cm} \text{(A.41)}

\[a^{m+1} = f^{m+1}(W^{m+1}a^m + b^{m+1}) \] for \(m = 0, 1, \ldots, M - 1 \) \hspace{1cm} \text{(A.42)}

\[a = a^M \] \hspace{1cm} \text{(A.43)}

The next step is to propagate the sensitivities backward through the network:

\[s^M = -2F^M(n^M)(t - a) \] \hspace{1cm} \text{(A.44)}

\[s^m = F^m(n^m)(W^{m+1})^T s^{m+1}, \] for \(m = M - 1, \ldots, 2, 1 \) \hspace{1cm} \text{(A.45)}

Finally, the weights and biases are updated using the approximate steepest descent rule:

\[W^m(k + 1) = W^m(k) - \alpha s^m(a^{m-1})^T \] \hspace{1cm} \text{(A.46)}

\[b^m(k + 1) = b^m(k) - \alpha s^m \] \hspace{1cm} \text{(A.47)}
The Genetic Algorithm

The genetic algorithm (GA) is an optimization and search technique based on the principles of genetics and natural selection. A GA allows a population composed of many individuals to evolve under specified selection rules to a state that maximizes the “fitness” (i.e., minimizes the cost function). The method was developed by John Holland (1975) over the course of the 1960s and 1970s and finally popularized by one of his students, David Goldberg, who was able to solve a difficult problem involving the control of gas-pipeline transmission for his dissertation (Goldberg, 1989). Holland’s original work was summarized in his book. He was the first to try to develop a theoretical basis for GAs through his schema theorem. The work of De Jong (1975) showed the usefulness of the GA for function optimization and made the first concerted effort to find optimized GA parameters. Goldberg has probably contributed the most fuel to the GA fire with his successful applications and excellent book (1989). Since then, many versions of evolutionary programming have been tried with varying degrees of success.
Some of the advantages of GA include that it

- Optimizes with continuous or discrete variables,
- Doesn’t require derivative information,
- Simultaneously searches from a wide sampling of the cost surface,
- Deals with a large number of variables,
- Is well suited for parallel computers,
- Optimizes variables with extremely complex cost surfaces (they can jump out of a local minimum),
- Provides a list of optimum variables, not just a single solution,
- May encode the variables so that the optimization is done with the encoded variables, and
- Works with numerically generated data, experimental data, or analytical functions.

These advantages are intriguing and produce stunning results when traditional optimization approaches fail miserably.

Of course, the GA is not the best way to solve every problem. For instance, the traditional methods have been tuned to quickly find the solution of a well-behaved convex analytical function of only a few variables. For such cases the calculus-based methods outperform the GA, quickly finding the minimum while the GA is still analyzing the costs of the initial population. For these problems the optimizer should use the experience of the past and employ these quick methods. However, many realistic problems do not fall into this category. In addition, for problems that are not overly difficult, other methods may find
the solutions faster than the GA. The large population of solutions that gives the GA its power is also its bane when it comes to speed on a serial computer – the cost function of each of those solutions must be evaluated. However, if a parallel computer is available, each processor can evaluate a separate function at the same time. Thus the GA is optimally suited for such parallel computations.

Components of a Continuous Genetic Algorithm:

Define cost function, cost, variables
Select GA parameters

Generate initial population

Find cost for each chromosome

Select mates

Mating

Mutation

Convergence check

Figure B-1: Flowchart of a Continuous GA
The flowchart in Figure A-C1 provides a “big picture” overview of a continuous GA. Most sources call the version of continuous GA a real-valued GA. The primary difference between the binary and continuous GA is the fact that variables are no longer represented by bits of zeros and ones, but instead by floating-point numbers over whatever range is deemed appropriate.

The Example Variables and Cost function

The goal is to solve some optimization problem where we search for an optimal (minimum) solution in terms of the variables of the problem. Therefore we begin the process of fitting it to a GA by defining a chromosome as an array of variable values to be optimized. If the chromosome has \(N_{\text{var}} \) variables (an \(N \)-dimensional optimization problem) given by \(p_1, p_2, \ldots, p_{N_{\text{var}}} \) then the chromosome is written as an array with \(1 \times N_{\text{var}} \) elements so that

\[
\text{chromosome} = [p_1, p_2, \ldots, p_{N_{\text{var}}}] \ldots \quad (B.1)
\]

In this case, the variable values are represented as floating-point numbers. Each chromosome has a cost found by evaluating the cost function \(f \) at the variables \(p_1, p_2, \ldots, p_{N_{\text{var}}} \).

\[
\text{cost} = f(\text{chromosome}) = f(p_1, p_2, \ldots, p_{N_{\text{var}}}) \ldots \quad (B.2)
\]

Equations (1) and (2) along with applicable constraints constitute the problem to be solved.

Variable Encoding, Precision, and Bounds

Since the GA is search technique, it must be limited to exploring a reasonable region of
variable space. Sometimes this is done by imposing a constraint on the problem. If one does not know the initial search region, there must be enough diversity in the initial population to explore a reasonably sized variable space before focusing on the most promising regions.

Initial Population

To begin the GA, we define an initial population of N_{pop} chromosomes. A matrix represents the population with each row in the matrix begin a $1 \times N_{var}$ array (chromosome) of continuous values. Given an initial population of N_{pop} chromosomes, the full matrix of $N_{pop} \times N_{var}$ random values is generated by the MATLAB command:

$$
\text{pop} = \text{rand}(\text{Npop}, \text{Nvar})
$$

all variables are normalized to have values between 0 and 1, the range of a uniform random number generator. The values of a variable are “unnormalized” in the cost function. If the range of values is between P_{lo} and P_{hi}, then the unnormalized values are given by

$$
P = (P_{hi} - P_{lo})p_{\text{norm}} + P_{lo} \text{ ... (B.3)}
$$

where

- P_{hi} = highest number in the variable range
- P_{lo} = lowest number in the variable range
- p_{norm} = normalized value of the variable

The individual chromosomes are not all created equal. Each one’s worth is assessed by
the cost function. So at this point, the chromosomes are passed to the cost function for evaluation.

Natural Selection

Now is the time to decide which chromosomes in the initial population are fit enough to survive and possibly reproduce offspring in the next generation. The N_{pop} costs and associated chromosomes are ranked from lowest cost to highest cost. The rest die off. This process of natural selection must occur at each iteration of the algorithm to allow the population of chromosomes to evolve over the generations to the most fit members as defined by the cost function. Not all of the survivors are deemed fit enough to mate. Of the N_{pop} chromosomes in a given generation, only the top N_{keep} are kept for mating and the rest are discarded to make room for the new offspring.

Pairing

Two mothers and fathers pair in some random fashion. Each pair produces two offspring that contain traits from each parent. In addition the parents survive to be part of the next generation. The more similar the two parents, the more likely are the offspring to carry the traits of the parents. For example, a random generator produced the following two pairs of random numbers: (0.6710, 0.8124) and (0.7930,0.3039). Using these random pairs, the following chromosomes were randomly selected to mate:

\[

text{ma} = [2 \ 3] \\
\text{pa} \ = \ [3 \ 1]
\]
Thus \textit{chromosome}_2 mates with \textit{chromosome}_3, and so forth. The \textbf{ma} and \textbf{pa} vectors contain the numbers corresponding to the chromosomes selected for mating.

Mating

Many different approaches have been tried for crossing over in continuous GAs. Adewuya (1996) reviews some of the methods. Several interesting methods are demonstrated by Michalewicz (1994).

The simplest methods choose one or more points in the chromosome to mark as the crossover points. Then the variables between these points are merely swapped between the two parents. For example purposes, consider the two parents to be

\[
\text{parent}_1 = [p_{m_1}, p_{m_2}, p_{m_3}, p_{m_4}, p_{m_5}, p_{m_6}, \ldots, p_{m_{N_{var}}}] \\
\text{parent}_2 = [p_{d_1}, p_{d_2}, p_{d_3}, p_{d_4}, p_{d_5}, p_{d_6}, \ldots, p_{d_{N_{var}}}]
\]

Crossover points are randomly selected, and then the variables in between are exchanged:

\[
\text{offspring}_1 = [p_{m_1}, p_{m_2}, \uparrow p_{d_3}, p_{d_4}, \uparrow p_{m_5}, p_{m_6}, \ldots, p_{m_{N_{var}}}] \\
\text{offspring}_2 = [p_{d_1}, p_{d_2}, \uparrow p_{m_3}, p_{m_4}, \uparrow p_{d_5}, p_{d_6}, \ldots, p_{d_{N_{var}}}]
\]

The extreme case is selecting \(N_{\text{var}} \) points and randomly choosing which of the two parents will contribute its variable at each position. Thus one goes down the line of the chromosomes and, at each variable, randomly, chooses whether or not to swap information between the two parents. This method is called the uniform crossover:
The problem with these point crossover methods is that no new information is introduced: each continuous value that was randomly initiated in the initial population is propagated to the next generation, only in different combinations. Although this strategy worked fine for binary representations, there is now a continuum of values, and in this continuum we are merely interchanging two data points. These approaches totally rely on mutation to introduce new genetic material.

Mutations

Sometimes, we can find the method is working too well. If care is not taken, the GA can converge too quickly into one region of the cost surface. If this area is in the region of the global minimum, that is good. However, some functions have many local minima. If we do nothing to solve this tendency to converge quickly, we could end up in a local rather than a global minimum. To avoid this problem of overly fast convergence, we force the routine to explore other areas of the cost surface by randomly introducing changes, or mutations, in some of the variables. For the binary GA, this amounted to just changing a bit from 0 to a 1, and vice versa. The basic method of mutation is not much more complicated for the continuous GA. For more complicated methods, see Michalewicz (1994).

Most users of the continuous GA add a normally distributed random number to the variable selected for mutation

\[
p'_n = p_n + \sigma N_n (0,1)
\]
where

σ = standard deviation of the normal distribution

$N_k(0,1) = \text{standard normal distribution (mean} = 0 \text{ and variance} = 1)$

The Next Generation

After the mutations take place, the costs associated with the offspring and mutated chromosomes are calculated. The process is iterated until an acceptable solution is found.

Convergence

The number of generations that evolve depends on whether an acceptable solution is reached or a set of number of iterations is exceeded. After a while all the chromosomes and associated costs would become the same if it were not for mutations. At this point the algorithm should be stopped. Most GAs keep track of the population statistics in the form of population mean and minimum cost.
APPENDIX C
ANSYS CODES

C.1 ANSYS Codes for 2D Axisymmetric Simulation with Five Fins:

```
/BATCH
/config, nres, 100000
! Assigns values to ANSYS configuration parameters

!--------------------------------------------------------------------!

! PREPROCESSING
!--------------------------------------------------------------------!
/PREP7

!--------------------------------------------------------------------!

! GEOMETRIC MODELING
!--------------------------------------------------------------------!

!--------------------------------------------------------------------!

! Modeling For the Pressure Vessel (1)
!--------------------------------------------------------------------!

!--------------------------------------------------------------------!

! Keypoints for Pressure Vessel
!--------------------------------------------------------------------!
K, 1 ,
K, 2 0.254 ,0 0
K, 3 0.254 1.4286 0
K,75 0 0.0127 0
K,76 0.2413 0.0127 0
K,77 0.2413 1.4286 0

! Lines for Pressure Vessel
!--------------------------------------------------------------------!
L,1,2
L,2,3
L,1,75
L,75,76
L,76,77
L,77,3

! Pressure Vessel Area
!--------------------------------------------------------------------!
A,1,2,3,77,76,75 ! Area No. 1 !--------------------------------------------------------------------!
```
Modeling The Motor Surface (2)

Keypoints Motor

\[
\begin{align*}
K, & 30, 0, 0.4997, 0 \\
K, & 31, 0.1296, 0.4997, 0 \\
K, & 32, 0.1924, 0.5429, 0 \\
K, & 33, 0.1924, 0.6647, 0 \\
K, & 34, 0.1703, 0.6647, 0 \\
K, & 35, 0.1924, 0.6868, 0 \\
K, & 36, 0.1924, 0.9675, 0 \\
K, & 37, 0.1697, 0.9891, 0 \\
K, & 38, 0.1470, 1.0107, 0 \\
K, & 39, 0.1470, 1.0539, 0 \\
K, & 40, 0.1470, 1.0971, 0 \\
K, & 41, 0.1851, 1.0971, 0 \\
K, & 42, 0.1851, 1.2051, 0 \\
K, & 43, 0.1551, 1.2051, 0 \\
K, & 44, 0.1253, 1.2406, 0 \\
K, & 45, 0.1253, 1.3422, 0 \\
K, & 46, 0.1855, 1.3778, 0 \\
K, & 1016, 0, 0.5124, 0 \\
K, & 1017, 0.1296, 0.5124, 0 \\
K, & 1018, 0.1797, 0.5429, 0 \\
K, & 1019, 0.1797, 0.6520, 0 \\
K, & 1020, 0.1543, 0.6520, 0 \\
K, & 1021, 0.1797, 0.6868, 0 \\
K, & 1022, 0.1797, 0.9675, 0 \\
K, & 1023, 0.1570, 0.9891, 0 \\
K, & 1024, 0.1570, 1.0107, 0 \\
K, & 1025, 0.1343, 1.0539, 0 \\
K, & 1026, 0.1343, 1.1098, 0 \\
K, & 1027, 0.1724, 1.1098, 0 \\
K, & 1028, 0.1724, 1.1924, 0 \\
K, & 1029, 0.1470, 1.1924, 0 \\
K, & 1030, 0.1126, 1.2406, 0 \\
K, & 1031, 0.1126, 1.3422, 0 \\
K, & 1032, 0.1728, 1.3778, 0
\end{align*}
\]

Lines Motor

\[
\begin{align*}
L, & 30, 31 \\
L, & 31, 32 \\
L, & 32, 33 \\
L, & 33, 34 \\
L, & 34, 35 \\
L, & 35, 36 \\
L, & 36, 37 \\
L, & 37, 38 \\
L, & 38, 39 \\
L, & 39, 40 \\
L, & 40, 41 \\
L, & 41, 42 \\
L, & 42, 43 \\
L, & 43, 44 \\
L, & 44, 45 \\
L, & 45, 46 \\
L, & 30, 1016 \\
L, & 1016, 1017 \\
L, & 1017, 1018 \\
L, & 1018, 1019 \\
L, & 1019, 1020 \\
L, & 1020, 1021 \\
L, & 1021, 1022 \\
L, & 1022, 1023 \\
L, & 1023, 1024 \\
L, & 1024, 1025 \\
L, & 1025, 1026 \\
L, & 1026, 1027 \\
L, & 1027, 1028 \\
L, & 1028, 1029 \\
L, & 1029, 1030 \\
L, & 1030, 1031 \\
L, & 1031, 1032 \\
L, & 1032, 139
\end{align*}
\]

Motor Surface Area (Area 4)

\[
\begin{align*}
A, & 30, 31, 32, 33, 34, 35, 36, 37, 38, 1024, 1023, 1022, 1021, 1020, 1019, 1018, 1017, 1016, A, 38, 39, 40, 41, 42, 43, 44, 45, 46, 1032, 1031, 1030, 1029, 1028, 1027, 1026, 1025, 1024 \\
AADD, & 2, 3
\end{align*}
\]
Modeling The Air Gap (3)

<table>
<thead>
<tr>
<th>Keypoints Air gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>K, 47, 0.2286, 1.3778, 0</td>
</tr>
<tr>
<td>K, 48, 0.2286, 1.4286, 0</td>
</tr>
<tr>
<td>K, 1033, 0.2413, 0.9675, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lines Air gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, 46, 47</td>
</tr>
<tr>
<td>L, 47, 48</td>
</tr>
<tr>
<td>L, 77, 48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air gap Area (Area 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, 75, 30, 31, 32, 33, 34, 35, 36, 1033, 76, 77, 1033</td>
</tr>
</tbody>
</table>

Modeling The Syntatic foam (4)

<table>
<thead>
<tr>
<th>Keypoints Syntatic foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>K, 6, 0.254, 1.4666, 0</td>
</tr>
<tr>
<td>K, 7, 0.254, 2.2969, 0</td>
</tr>
<tr>
<td>K, 8, 0, 2.2969, 0</td>
</tr>
<tr>
<td>K, 59, 0, 1.9492, 0</td>
</tr>
<tr>
<td>K, 66, 0.1890, 1.4920, 0</td>
</tr>
<tr>
<td>K, 67, 0.2286, 1.4920, 0</td>
</tr>
<tr>
<td>K, 68, 0.2286, 1.4666, 0</td>
</tr>
<tr>
<td>K, 69, 0.1890, 1.6825, 0</td>
</tr>
<tr>
<td>K, 72, 0.1016, 1.6825, 0</td>
</tr>
<tr>
<td>K, 73, 0.1016, 1.9492, 0</td>
</tr>
<tr>
<td>K, 74, 0.0381, 1.9492, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lines Syntatic foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, 6, 7</td>
</tr>
<tr>
<td>L, 7, 8</td>
</tr>
<tr>
<td>L, 8, 59</td>
</tr>
<tr>
<td>L, 59, 74</td>
</tr>
<tr>
<td>L, 74, 73</td>
</tr>
<tr>
<td>L, 73, 72</td>
</tr>
<tr>
<td>L, 72, 69</td>
</tr>
<tr>
<td>L, 69, 66</td>
</tr>
<tr>
<td>L, 66, 67</td>
</tr>
<tr>
<td>L, 67, 68</td>
</tr>
<tr>
<td>L, 68, 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syntatic foam Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, 6, 7, 8, 59, 73, 72, 69, 66, 67, 68, 77, 1033</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADD, 2, 3</td>
</tr>
</tbody>
</table>

140
Modeling The Shaft (5)

Keypoints Shaft

K,49,0.0381,1.4286,0
K,50,0.0381,1.3778,0
K,51,0,1.3778,0
K,64,0.0381,1.4920,0
K,71,0.0381,1.6698,0
K,79,0.0381,1.4666,0

Lines Shaft

L,51,59
L,59,74
L,74,71
L,71,64
L,64,79
L,79,49
L,49,50
L,51,50

Shaft Area (Area 3)

A,50,51,59,74!Area 3

Modeling The Inner End cap (6)

Keypoints Inner End cap

these key points are already defined
K,46,0.1855,1.3778,0
K,47,0.2286,1.3778,0
K,48,0.2286,1.4286,0
K,49,0.0381,1.4286,0
K,50,0.0381,1.3778,0
K,1032,0.1728,1.3778,0

Lines Inner end cap

L,50,1032
L,1032,46!already defined
L,46,47!already defined
L,47,48!already defined
L,48,49
L,49,50!already defined

Inner End cap Area

A,47,48,49,50!Area 6

141
Modeling The Middle End cap (7)

Keypoints Middle End cap

K, 3, 0.254, 1.4286, 0 ! already defined
K, 4, 0.299, 1.4286, 0
K, 5, 0.299, 1.4666, 0
K, 6, 0.254, 1.4666, 0 ! already defined
K, 48, 0.2286, 1.4286, 0 ! already defined
K, 49, 0.0381, 1.4286, 0 ! already defined
K, 68, 0.2286, 1.4666, 0 ! already defined
K, 77, 0.2413, 1.4286, 0 ! already defined
K, 79, 0.0381, 1.4666, 0 ! already defined

Lines Middle end cap

L, 3, 4
L, 4, 5
L, 5, 6
L, 6, 68 ! already defined
L, 68, 79
L, 79, 49 ! already defined
L, 49, 48 ! already defined
L, 48, 77 ! already defined
L, 77, 3 ! already defined

Middle End cap Area

A, 49, 4, 5, 79 ! Area 7

Modeling The Outer End cap (8)

Keypoints Outer End cap

K, 64, 0.0381, 1.4920, 0 ! defined
K, 65, 0.1763, 1.4920, 0
K, 66, 0.1890, 1.4920, 0 ! defined
K, 67, 0.2286, 1.4920, 0 ! defined
K, 68, 0.2286, 1.4666, 0 ! defined
K, 79, 0.0381, 1.4666, 0 ! defined

Lines Outer end cap

L, 64, 65
L, 65, 66
L, 66, 67 ! already defined
L, 67, 68 ! already defined
L, 68, 79 ! already defined
L, 79, 64 ! already defined

Outer End cap Area

A, 67, 68, 79, 64 ! Area 8
Modeling The Inner Shaft Housing (9)

Keypoints Inner Shaft Housing

K,64,0.0381,1.4920,0 !already defined
K,65,0.1763,1.4920,0 !already defined
K,70,0.1763,1.6698,0 !already defined
K,71,0.0381,1.6698,0 !already defined

Lines Inner Shaft Housing

L,64,65 ! already defined
L,65,70
L,70,71
L,71,64 ! already defined

Inner Shaft Housing Area

A,64,65,70,71 ! Area 9

Modeling The Outer Shaft Housing (10)

Keypoints Outer Shaft Housing

K,65,0.1763,1.4920,0 ! defined
K,66,0.1890,1.4920,0 ! defined
K,69,0.1890,1.6825,0 ! defined
K,70,0.1763,1.6698,0 ! defined
K,71,0.0381,1.6698,0 ! defined
K,72,0.1016,1.6825,0 ! defined
K,73,0.1016,1.9492,0 ! defined
K,74,0.0381,1.9492,0 ! defined

Lines Outer Shaft Housing

L,65,66 ! already defined
L,66,69 ! already defined
L,69,72 ! already defined
L,72,73 ! already defined
L,73,74 ! already defined
L,74,71 ! already defined
L,71,70 ! already defined
L,70,65 ! already defined

Outer Shaft Housing Area

A,65,70,71,74,73,72,69,66 ! Area 10
<table>
<thead>
<tr>
<th>Keypoints FIN (1)</th>
<th>Keypoints FIN (2)</th>
<th>Keypoints FIN (3)</th>
<th>Keypoints FIN (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K,2001,0.1296,0.4997,0</td>
<td>K,2005,0.1924,0.5429,0</td>
<td>K,2009,0.1924,0.6868,0</td>
<td>K,2013,0.1470,1.0539,0</td>
</tr>
<tr>
<td>K,2002,0.1661,0.5251,0</td>
<td>K,2006,0.1924,0.5683,0</td>
<td>K,2010,0.1924,0.7122,0</td>
<td>K,2014,0.1470,1.0793,0</td>
</tr>
<tr>
<td>K,2003,0.2413,0.4997,0</td>
<td>K,2007,0.2413,0.5429,0</td>
<td>K,2011,0.2413,0.6868,0</td>
<td>K,2015,0.2413,1.0539,0</td>
</tr>
<tr>
<td>K,2004,0.2413,0.5251,0</td>
<td>K,2008,0.2413,0.5683,0</td>
<td>K,2012,0.2413,0.7122,0</td>
<td>K,2016,0.2413,1.0793,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIN (1) Lines</th>
<th>FIN (2) Lines</th>
<th>FIN (3) Lines</th>
<th>FIN (4) Lines</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fin (1) Area</th>
<th>Fin (2) Area</th>
<th>Fin (3) Area</th>
<th>Fin (4) Area</th>
</tr>
</thead>
</table>
Modeling Fin (5)

Keypoints FIN (5)

K,2017,0.1253 ,1.2406 ,0
K,2018,0.1253 ,1.2660 ,0
K,2019,0.2413 ,1.2406 ,0
K,2020,0.2413 ,1.2660 ,0

FIN (5) Lines

L,2017,2019
L,2018,2020

Fin (5) Area

Overlapping all areas

AOVLAP,ALL

ELEMENT TYPE

ET,1,PLANE77

TURNING ON THE AXISYMMETRIC OPTION

KEYOPT,1,3,1
<table>
<thead>
<tr>
<th>MATERIAL PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) AIR</td>
</tr>
<tr>
<td>NON-LINEAR CASE (TEMPERATURE DEPENDENT PROPERTIES)</td>
</tr>
<tr>
<td>MPTEMP,1,273,373,473,573,673 ! Defines Air Properties Table</td>
</tr>
<tr>
<td>MPDATA,KXX,1,1,0.0243,0.0314,0.0386,0.0454,0.0515</td>
</tr>
<tr>
<td>MPDATA,DENS,1,1,1.293,0.946,0.746,0.616,0.524</td>
</tr>
<tr>
<td>MPDATA,C,1,1,1005,1009,1026,1047,1068</td>
</tr>
<tr>
<td>(2) 316L Stainless Steel</td>
</tr>
<tr>
<td>Density of 316L stainless steel</td>
</tr>
<tr>
<td>Specific heat capacity of 316L stainless steel</td>
</tr>
<tr>
<td>(3) Syntatic foam</td>
</tr>
<tr>
<td>thermal conductivity of syntatic foam, W/mK</td>
</tr>
<tr>
<td>specific heat capacity of syntatic foam, J/kg.K</td>
</tr>
<tr>
<td>density of syntatic foam, 450 kg/cub.m</td>
</tr>
<tr>
<td>(4) FIN</td>
</tr>
<tr>
<td>thermal conductivity of copper is 400 W/m.K</td>
</tr>
<tr>
<td>specific heat capacity of copper is 390 J/kg.K</td>
</tr>
<tr>
<td>density of copper is 8960 kg/m3</td>
</tr>
<tr>
<td>MESH THE AIR</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>TYPE,1 MAT,1</td>
</tr>
<tr>
<td>ASEL,S,AREA,,22,24 AMESH,ALL</td>
</tr>
<tr>
<td>ASEL,,27 AMESH,27</td>
</tr>
<tr>
<td>ASEL,S,AREA,,29,30 AMESH,ALL</td>
</tr>
<tr>
<td>ASEL,S,AREA,,8,9 AMESH,ALL</td>
</tr>
<tr>
<td>ASEL,S,AREA,,25,26 AMESH,ALL</td>
</tr>
<tr>
<td>ASEL,S,AREA,,33,34 AMESH,ALL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESH STAINLESS STEEL</th>
<th>MESH FIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE,1 MAT,2</td>
<td>TYPE,1 MAT,4</td>
</tr>
<tr>
<td>ASEL,,16 AMESH,16</td>
<td>ASEL,S,AREA,,17,21 AMESH,ALL</td>
</tr>
<tr>
<td>ASEL,,28 AMESH,28</td>
<td>ALLSEL,ALL</td>
</tr>
<tr>
<td>ASEL,,31 AMESH,31</td>
<td></td>
</tr>
<tr>
<td>ASEL,S,AREA,,8,9 AMESH,ALL</td>
<td></td>
</tr>
<tr>
<td>ASEL,S,AREA,,25,26 AMESH,ALL</td>
<td></td>
</tr>
<tr>
<td>ASEL,S,AREA,,33,34 AMESH,ALL</td>
<td></td>
</tr>
<tr>
<td>ALLSEL,ALL</td>
<td></td>
</tr>
</tbody>
</table>
Refine the mesh around the heat flux lines (if necessary)

!refine,66,,2
!refine,69,,2
!refine,71,,2
!refine,75,,2
!refine,78,,2
!refine,80,,2
!refine,85,,2
!refine,89,,2
!refine,91,,2
!refine,94,,2

APPLY LOADS

Heat Flux

LSEL,S,LINE,,56,71 ! Select lines numbered through 65 to 95
SFL,ALL,HFLUX,766 ! Heat flux is 766 W/m2
LSEL,,35
SFL,35,HFLUX,766
ALLSEL,ALL

Surface Temperature

LSEL,S,LINE,,1,7
DL,ALL,,Temp,305
ALLSEL,ALL
FINISH

SOLUTION
! STEDY -STATE SOLUTION
ANTYPE,0
SOLVE
FINISH
!---

! TRANSIENT SOLUTION
!--
!ANTYPE,4 ! Specify transient Analysis
!----------------------------
! Examine solution control
!----------------------------
!SOLCONTROL,ON,0 ! Activate optimized nonlinear solu defaults
!
! Specify initial condition for the transient
! APLLOT
!INSEL,ALL
!ALLSEL,BELOW,AREA
!IC,ALL,TEMP,305,
!ALLSEL,ALL
! Set Time, Time step size, and related parameter
!
!TIME,86400 ! Set time at the end of load step
!AUTOTS,-1 ! Program chosen automatic time stepping
!DELTIM,500,1,500,ON ! Specify the time step size
!KBC,1 ! Specify stepped loading
!
! Set Output Controls
!
!OUTRES,ALL,ALL ! Write to file at every step
!SAVE
! Solve
!
!/STAT,SOLU ! Display solution options
!/REPLOT
!/APLOT ! Display all nodes
!/APLOT ! Display areas
!/SOLVE
!/FINISH
!---
C.2 ANSYS Codes for 3D Simulation with half symmetry:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BATCH</td>
<td>Assign values to ANSYS configuration parameters</td>
</tr>
<tr>
<td>/config, nres, 100000</td>
<td></td>
</tr>
<tr>
<td>!---</td>
<td>! PREPROCESSING</td>
</tr>
<tr>
<td>!---</td>
<td>! GEOMETRIC MODELING</td>
</tr>
<tr>
<td>/PREP7</td>
<td></td>
</tr>
<tr>
<td>!---</td>
<td>! DEFINING KEY POINTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Points</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>K,1</td>
<td>0.8303,0,0</td>
</tr>
<tr>
<td>K,2</td>
<td>0.8303,-0.045,0</td>
</tr>
<tr>
<td>K,3</td>
<td>0.8683,-0.045,0</td>
</tr>
<tr>
<td>K,4</td>
<td>0.8683,0,0</td>
</tr>
<tr>
<td>K,5</td>
<td>2.2969,0,0</td>
</tr>
<tr>
<td>K,6</td>
<td>2.2969,0.254,0</td>
</tr>
<tr>
<td>K,7</td>
<td>0.3477,0.254,0</td>
</tr>
<tr>
<td>K,8</td>
<td>0.9191,0.254,0</td>
</tr>
<tr>
<td>K,9</td>
<td>0.8683,0.0127,0</td>
</tr>
<tr>
<td>K,10</td>
<td>2.2842,0.0127,0</td>
</tr>
<tr>
<td>K,11</td>
<td>2.2842,0.254,0</td>
</tr>
<tr>
<td>K,12</td>
<td>0.0,0.254,0</td>
</tr>
<tr>
<td>K,13</td>
<td>0.8303,0.0127,0</td>
</tr>
<tr>
<td>K,14</td>
<td>0.8303,0.254,0</td>
</tr>
<tr>
<td>K,15</td>
<td>0.8303,0.254,0</td>
</tr>
<tr>
<td>K,16</td>
<td>0.8303,0.0254,0</td>
</tr>
<tr>
<td>K,17</td>
<td>0.8049,0.0254,0</td>
</tr>
<tr>
<td>K,18</td>
<td>0.9191,0.0254,0</td>
</tr>
<tr>
<td>K,19</td>
<td>0.8683,0.0254,0</td>
</tr>
<tr>
<td>K,20</td>
<td>0.8049,0.06503,0</td>
</tr>
<tr>
<td>K,21</td>
<td>0.6144,0.06503,0</td>
</tr>
<tr>
<td>K,22</td>
<td>0.6144,0.1524,0</td>
</tr>
<tr>
<td>K,23</td>
<td>0.8303,0.1524,0</td>
</tr>
<tr>
<td>K,24</td>
<td>0.8049,0.1524,0</td>
</tr>
<tr>
<td>K,25</td>
<td>0.9191,0.06503,0</td>
</tr>
<tr>
<td>K,26</td>
<td>0.9191,0.1524,0</td>
</tr>
<tr>
<td>K,27</td>
<td>0.8683,0.1524,0</td>
</tr>
<tr>
<td>K,28</td>
<td>0.8049,0.1524,0</td>
</tr>
<tr>
<td>K,29</td>
<td>0.8303,0.2159,0</td>
</tr>
<tr>
<td>K,30</td>
<td>0.8303,0.2921,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Points</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>K,31</td>
<td>0.8049,0.2921,0</td>
</tr>
<tr>
<td>K,32</td>
<td>0.6144,0.2921,0</td>
</tr>
<tr>
<td>K,33</td>
<td>0.6144,0.2159,0</td>
</tr>
<tr>
<td>K,34</td>
<td>0.8049,0.2159,0</td>
</tr>
<tr>
<td>K,35</td>
<td>0.8303,0.0127,0</td>
</tr>
<tr>
<td>K,36</td>
<td>0.8303,0.06503,0</td>
</tr>
<tr>
<td>K,37</td>
<td>0.8303,0.1524,0</td>
</tr>
<tr>
<td>K,38</td>
<td>0.8303,0.2159,0</td>
</tr>
<tr>
<td>K,39</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,40</td>
<td>0.8303,0.2159,0</td>
</tr>
<tr>
<td>K,41</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,42</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,43</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,44</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,45</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,46</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,47</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,48</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,49</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,50</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,51</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,52</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,53</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,54</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,55</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,56</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,57</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,58</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,59</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,60</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,61</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,62</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,63</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,64</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,65</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,66</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,67</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,68</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,69</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,70</td>
<td>0.8303,0.2921,0</td>
</tr>
<tr>
<td>K,71</td>
<td>0.8303,0.2921,0</td>
</tr>
</tbody>
</table>

150
<table>
<thead>
<tr>
<th>L,1,2</th>
<th>L,26,27</th>
</tr>
</thead>
<tbody>
<tr>
<td>L,2,3</td>
<td>L,27,28,</td>
</tr>
<tr>
<td>L,3,4</td>
<td>L,28,29</td>
</tr>
<tr>
<td>L,4,5</td>
<td>L,29,8</td>
</tr>
<tr>
<td>L,5,6</td>
<td>L,48,17</td>
</tr>
<tr>
<td>L,6,7</td>
<td>L,29,46</td>
</tr>
<tr>
<td>L,7,15</td>
<td>L,8,9</td>
</tr>
<tr>
<td>L,15,65</td>
<td>L,38,39</td>
</tr>
<tr>
<td>L,65,1017</td>
<td>L,39,40</td>
</tr>
<tr>
<td>L,8,12</td>
<td>L,40,25</td>
</tr>
<tr>
<td>L,12,1</td>
<td>L,40,41</td>
</tr>
<tr>
<td>L,5,13</td>
<td>L,9,46</td>
</tr>
<tr>
<td>L,14,15</td>
<td>L,49,50</td>
</tr>
<tr>
<td>L,46,49</td>
<td>L,1010,1011</td>
</tr>
<tr>
<td>L,49,23</td>
<td>L,1011,1012</td>
</tr>
<tr>
<td>L,23,24</td>
<td>L,1012,1013</td>
</tr>
<tr>
<td>L,24,13</td>
<td>L,1013,1014</td>
</tr>
<tr>
<td>L,24,47</td>
<td>L,1014,1015</td>
</tr>
<tr>
<td>L,2,17</td>
<td>L,1015,1016</td>
</tr>
<tr>
<td>L,17,18</td>
<td>L,1016,1017</td>
</tr>
<tr>
<td>L,18,25</td>
<td>L,13,14</td>
</tr>
<tr>
<td>L,25,40</td>
<td>L,50,51</td>
</tr>
<tr>
<td>L,25,26</td>
<td>L,51,52</td>
</tr>
</tbody>
</table>
CREATING AREAS

MOTOR

MOTOR AREA PART 1

A,49,50,51,52,53,54,55,56,57,1009,1008,1007,1006,1005,1004,1003,1002,1001

MOTOR AREA PART 2

A,57,58,59,60,61,62,63,64,65,1017,1016,1015,1014,1013,1012,1011,1010,1009

AADD,1,2

PRESSURE VESSEL

A,5,6,7,15,14,13

SHAFT

A,29,8,9,46

AIR GAR

A,13,24,23,49,50,51,52,53,54,55,56,57,58,59,60,66 ! 1st HALF
A,66,14,15,65,64,63,62,61,60,66 ! 2nd HALF

ADDITION AREAS 4 AND 5 TO CREATE THE FULL AIR GAP AREA

AADD,4,5
!--------------------------------------
! STATIC FOAM
!--------------------------------------
A,1,2,17,18,25,26,27,28,8,12

!--------------------------------------
! SHAFT HOUSING
!--------------------------------------
A, 25, 26, 27, 28, 29, 38, 39, 40 ! OUTER
A, 38, 39, 40, 41 ! INNER

!--------------------------------------
! END CAPS
!--------------------------------------
A, 17, 18, 41, 48 ! OUTER
A, 3, 4, 47, 48 ! MIDDLE
A, 23, 24, 47, 46 ! INNER

!--------------------------------------
! JOINING ALL THE AREA COMPONENTS
!--------------------------------------
AGLUE, ALL

!--------------------------------------
! EXTRUDING AREAS TO CREATE VOLUME
!--------------------------------------
VROTAT, 13,,,,,,67,7,180,1, ! CREATING PRESSURE VESSEL
VROTAT,14,,,,,,8,9,180,1, ! CREATING SHAFT
VROTAT,3,,,,,,9,65,180,1, ! CREATING MOTOR
VROTAT,16,,,,,,12,680,180,1, ! CREATING STATIC FOAM
VROTAT,5,,,,,,8,690,180,1, ! CREATING OUTER SHAFT HOUSING
VROTAT,6,,,,,,67,15,180,1, ! CREATING AIR GAP
VROTAT,7,,,,,,700,690,180,1, ! CREATING INNER SHAFT HOUSING
VROTAT,12,,,,,,680,690,-180,1, ! CREATING OUTER END CAP
VROTAT,15,,,,,,680,67,180,1, ! CREATING END CAP
VROTAT,11,,,,,,67,9,180,1, ! CREATING INNER END CAP
VGLUE,ALL
Element Type

ET, 1, SOLID90 ! The element is chosen thermal solid brick element 20 node 90

MATERIAL PROPERTIES

AIR

NON-LINEAR CASE (TEMPERATURE DEPENDENT PROPERTIES)

MPTEMP,1,273,373,473,573,673 ! Defines Air Properties Table
MPDATA,KXX,1,1,0.0243,0.0314,0.0386,0.0454,0.0515
MPDATA,DENS,1,1,1.293,0.946,0.746,0.616,0.524
MPDATA,C,1,1,1005,1009,1026,1047,1068

LINEAR CASE (CONSTANT PROPERTIES)

!MP,KXX,1,0.03
!MP,C,1,1005
!MP,DENS,1,1

316L STAINLESS STEEL

!MPTEMP,2,273,773 ! Defines 316L stainless steel properties Table
!MPDATA,KXX,2,2,16.3,21.5 ! Thermal conductivity of 316L stainless steel
MP,KXX,2,21.5
MP,DENS,2,8000 ! Density of 316L stainless steel
MP,C,2,500 ! Specific heat capacity of 316L stainless steel

SYNTATIC FOAM

MP,KXX,3,0.12 ! Thermal conductivity of syntatic foam, W/mK
MP,C,3,1280 ! Specific heat capacity of syntatic foam, J/kg.K
MP,DENS,3,450 ! Density of syntatic foam, 450kg/cub.m
! MESH THE AREAS
!---
LESIZE,ALL,0.06
!---
MSHKEY, 0 ! Specifies whether free meshing or mapped meshing should be used to mesh a model; 0- free
MSHAPE, 1, 3d ! For elements that support multiple shapes, specifies the element shape to be used for meshing.
 ! 1 - Mesh with triangle-shaped elements when Dimension = 2-D
 ! mesh with tetrahedral-shaped elements when Dimension = 3-D.
 ! 3d - 3-D model (volume mesh).

! MESHING AIR GAP VOLUME
!---
VSEL,,,,17 ! Select volume 19 as air gap volume; [the vol no can be changed depending on machine; check!]
VATT,1, ,1,0 ! Assigning corresponding material and element to the volume
VMESH,17

! MESHING THE STATIC FOAM
!---
VSEL,,,,16
VATT,3, ,1,0
VMESH,16

! MESHING THE STAINLESS STEEL PARTS
!---
VSEL,S,VOLU,,1,3
VATT,2, ,1,0
VMESH,ALL
VSEL, S, VOLU,, 11, 15 ! Selecting new sets of volume based on volume nos 11-17
VATT,2, ,1,0
VMESH,ALL
!---
! ALLSEL, ALL ! Selecting everything after finishing meshing
! APPLY LOADS

! Some areas have to be constrained for all DOF

ASEL,,,,3
SFA,3,1,HFLUX,0
ASEL,,,,25
SFA,25,1,HFLUX,0
ASEL,,,,59
SFA,59,1,HFLUX,0
ASEL,,,,134
SFA,134,1,HFLUX,0
ASEL,,,,138
SFA,138,1,HFLUX,0
ASEL,,,,141
SFA,141,1,HFLUX,0
ASEL,,,,143
SFA,143,1,HFLUX,0
ASEL,S,AREA,,5,7
SFA,ALL,1,HFLUX,0
ASEL,S,AREA,,11,17
SFA,ALL,1,HFLUX,0
ASEL,S,AREA,,147,149
SFA,ALL,1,HFLUX,0
ALLSEL,ALL

! HEAT FLUX LOADS ON AREA

ASEL,S,AREA,,42,58 ! Selecting areas 37 to 52 as the inner surface areas of motor
SFA,ALL,1,HFLUX,807 ! Heat flux on selected areas
ASEL,,,,18
!SFA,18,1,HFLUX,807
ASEL,,,,132
!SFA,132,1,HFLUX,807
ALLSEL,ALL
! SURFACE TEMPERATURE

ASEL,S,AREA,,1,2
DA,ALL,TEMP,305 ! Temperature on the selected areas is 305 K
ASEL,S,AREA,,144,145
DA,ALL,TEMP,305
ASEL,,,,60
DA,60,TEMP,305
ASEL,,,,69
DA,69,TEMP,305
ASEL,,,,115
DA,115,TEMP,305
!ASEL,,,,141
!DA,141,TEMP,305
ALLSEL,ALL

! FINISHING PREPROCESSING

FINISH

! SOLUTION

/SOL
!* ANTYPDE,4
!* TRNOPT, FULL ! Transient full analysis
LUMP,0
SOLCONTROL, ON, 0 ! Activate optimized nonlinear solution defaults

! Specify initial condition for the transient

NSEL,ALL
!ALLSEL,BELOW,AREA
IC,ALL,TEMP,305,
ALLSEL,ALL
! Set Time, Time step size, and related parameter

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME, 86400</td>
<td>Set time at the end of load step</td>
</tr>
<tr>
<td>AUTOTS, -1</td>
<td>Program chosen automatic time stepping</td>
</tr>
<tr>
<td>DELTIM, 5000, 1, 5000, ON</td>
<td>Specify the time step size</td>
</tr>
<tr>
<td>KBC,1</td>
<td></td>
</tr>
</tbody>
</table>

! Set Output Controls

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTRES,ALL,ALL</td>
<td>Write to file at every step</td>
</tr>
<tr>
<td>SAVE</td>
<td></td>
</tr>
</tbody>
</table>

! SOLVE

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STAT,SOLU</td>
<td>Display solution options</td>
</tr>
<tr>
<td>/REPLOT</td>
<td>Display all nodes</td>
</tr>
<tr>
<td>!APLOT</td>
<td>Display areas</td>
</tr>
<tr>
<td>SOLVE</td>
<td></td>
</tr>
<tr>
<td>FINISH</td>
<td></td>
</tr>
<tr>
<td>/SOLU</td>
<td></td>
</tr>
<tr>
<td>FINISH</td>
<td></td>
</tr>
<tr>
<td>/POST1</td>
<td></td>
</tr>
<tr>
<td>SET,LAST</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>! PLNS,TEMP,</td>
<td></td>
</tr>
<tr>
<td>!ANTIME,10,0.5, ,0,0,0,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Montreal, Canada.

[34] Holland J., Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, USA (1975).

[38]. Joo, Min Sung, Combined Neural Networks and Genetic Algorithms as a Method for Reducing Redundancy in Steel Design, Department of Ferrous Technology, Pohang University of Science and Technology, 2008.

12, pp. 1323-1338.

166

[74]. S.S. Sablani, A. Kacimov, J. Perret, A.S. Mujumdar, A. Campo, Non-iterative

[82]. Yasar Islamoglu, A New Approach for the Prediction of Heat Transfer Rate of the Wire-on-tube Type heat Exchanger – Use of an Artificial Neural Network Model,

